Abstract:
An OLED display includes a first substrate including a thin film transistor and an OLED, and a second substrate on the first substrate and including a corner-cube pattern facing the first substrate.
Abstract:
An OLED display includes: a thin film transistor including a gate electrode, a source electrode, and a drain electrode; a planarization layer on the thin film transistor and including a contact hole at least partially exposing the drain electrode; a pixel electrode on the planarization layer and coupled to the drain electrode of the thin film transistor through the contact hole; a pixel defining layer on the planarization layer and having an opening that exposes the pixel electrode; an organic emission layer on the pixel electrode; and a common electrode on the organic emission layer and the pixel defining layer. The pixel defining layer includes a corner-cube pattern facing the common electrode.
Abstract:
The present invention relates to an organic light emitting diode (OLED) display and a manufacturing method thereof. The OLED display includes a substrate member that includes a plurality of pixel areas. A thin film transistor (TFT) is formed on the substrate member and includes a gate electrode, a source electrode, and a drain electrode. A planarization layer is formed on the TFT and includes a contact hole through which the drain electrode is partially exposed. A pixel electrode is formed on the planarization layer and is connected to the drain electrode of the TFT through the contact hole. A pixel defining layer is formed on the planarization layer and has a through opening. Light scattering spacers are formed on the pixel defining layer to scatter reflected light and may have various shapes and dimensions.
Abstract:
A thin film transistor, e.g., for use in an organic light emitting display, may include: a gate insulating layer disposed on a gate electrode located on a substrate; a semiconductor layer, disposed on the gate insulating layer; and a planarization layer disposed on the gate insulating layer, the source and drain electrodes, and the channel area, and having openings exposing parts of the first source and drain areas and the source and drain electrodes, respectively. The semiconductor layer may include: a channel area corresponding to the gate electrode; first source and drain areas doped with an impurity outside the channel area; second source and drain areas, including a metal, outside the first source and drain areas; and source and drain electrodes disposed on the second source and drain areas and exposing the first source and drain areas. A pixel electrode may be disposed in one of the openings.
Abstract:
Embodiments provide an organic light emitting diode display. The display includes a substrate, a pixel electrode formed on the substrate, and an organic emissive layer formed on the pixel electrode. A common electrode is formed on the organic emissive layer. In addition, a crystallized light scattering layer is formed on the common electrode. The crystallized light scattering layer may be a crystallized organic or crystallized inorganic layer having a rough surface in order to effectively scatter light and prevent phenomenon, such as Newton's Rings from occurring in the display.
Abstract:
A flat panel display integrated with a touch screen panel. The connecting patterns, which connect adjacent first sensing cells and adjacent second sensing cells are formed on the same level of the lower surface of the upper substrate of the flat panel display of the same material as metal patterns formed around the edge of the touch screen panel, and by arranging the connecting patterns not to cross each other. The flat panel display panel can also be integrated with a touch screen having improved visibility by forming the touch screen panel on the upper substrate of the flat panel display such that connecting patterns are formed in the regions between the pixels.
Abstract:
Present embodiments may be directed to a capacitor device, including a first electrode, which includes a first area and a second area, separated from each other, and a first bridge located between the first area and the second area, the first bridge electrically interconnecting the first area and the second area; a second electrode arranged to face the first electrode; and a dielectric layer between the first electrode and the second electrode.
Abstract:
An organic light emitting diode display including: a substrate; a plurality of pixel electrodes formed on the substrate; a pixel defining layer formed on the substrate, having openings exposing the pixel electrodes; a plurality of spacers disposed on the pixel defining layer; organic emission layers formed on the pixel electrodes; a common electrode formed on the organic emission layers; and a capping layer formed on the common electrode, to cover the organic emission layers.
Abstract:
An organic light emitting diode display includes a pixel having a plurality of sub-pixels. Each of the plurality of sub-pixels includes a first sub-pixel having a first anode and a first organic emission layer, a second sub-pixel having a second anode and a second organic emission layer, and a third sub-pixel having a third anode and a third organic emission layer. The first, second, and third anodes satisfy the following condition: W 1 + W 2
Abstract:
An organic light emitting diode (OLED) display includes: a first substrate including an OLED; a second substrate that is opposite to the first substrate; a sealant that is positioned between the first substrate and the second substrate and that couples the first substrate and the second substrate; and a sealant contraction reinforcement auxiliary structure that is positioned in at least one of a position between the first substrate and the sealant and a position between the second substrate and the sealant.