Abstract:
A fingerprint recognizing apparatus including a sensor section mounted on the apparatus body for detecting a fingerprint of an operator; a cover movable between an open position and a closed position for protecting the sensor section in such a manner that an operator's finger can access to the sensor section when the cover is in the open position; and a contact section arranged on the apparatus body at a position where the operator's finger can easily come into contact therewith during an operator's action to open the cover, the contact section being electrically connected to the ground of the apparatus body.
Abstract:
An electrical device includes a device body and a conversion plug. An AC plug is connected to an outlet with the conversion plug being detached. The conversion plug is connected to an outlet with a different shape with the conversion plug being connected to the AC plug. The AC plug includes an insulating pivot mount that has a pair of plug blades and is connected to the device body. The insulating pivot mount of the AC plug is provided with a retaining recessed portion that opens on the surface side of the device body. The conversion plug includes a retaining hook that is retained to the retaining recessed portion disposed in the insulating pivot mount of the AC plug. The conversion plug is connected to the device body via the AC plug in a state where the retaining hook is retained to the retaining recessed portion, and the plug blades are inserted into plug insertion portions.
Abstract:
A method for controlling a structure of a nano-scale substance, which comprises irradiating a mixture of low-dimensional quantum structures having a nano-scale with an electromagnetic wave in an oxygen atmosphere, to thereby selectively oxidize a low-dimensional quantum structure having a density of states resonating with the electromagnetic wave used for the irradiation. The method allows a low-dimensional quantum structure having a specific structure to be selectively disappeared from the mixture of low-dimensional quantum structures having a nano-scale.
Abstract:
In a conventional semiconductor integrated circuit device, a means for preventing a backflow current has a high on-state resistance, which makes it impossible to reduce the voltage loss in normal operation. A semiconductor integrated circuit device of the invention has a first MOS transistor, a second MOS transistor provided between the first MOS transistor and a power supply terminal, and a means that, in normal operation, keeps the gate of the second MOS transistor at a predetermined potential (preferably the ground potential) and that, when a backflow current is likely, turns the second MOS transistor off. This helps prevent a backflow current while reducing the voltage loss in normal operation.
Abstract:
It is an exemplified object of the present invention to provide a radiator mechanism and electronic apparatus having the radiator mechanism that can prevent destruction, deterioration, and malfunction due to heat of exoergic components or other electronic components, thermal deformation of a housing thereof, and low-temperature bum, without preventing the electronic apparatus including a printed board from miniaturization. The radiator mechanism is comprised of a cooling fan and a through hole provided in a motherboard, thereby thermally protecting a variety of circuit components mounted on the motherboard to provide a stable operation.
Abstract:
It is an exemplified object of the present invention to provide a heat sink, method of manufacturing the same, and electronic apparatus having the heat sink in which a fine and inexpensive adjustment upon placement and replacement may be made to exoergic components having various shapes and calorific values, and to placement space of various shapes and dimensions. The inventive heat sink comprises a housing, a cooling fin that is separably coupled with the housing, receives heal from the exoergic components, and dissipates heat form the exoergic components, and a cooling fan that forcefully cools the cooling fin and is connected with the housing, each element can be replaced alone.
Abstract:
It is an exemplified object of the present invention to provide a radiator mechanism and electronic apparatus having the radiator mechanism that can prevent destruction, deterioration, and malfunction due to heat of exoergic components or other electronic components, thermal deformation of a housing thereof, and low-temperature burn, without preventing the electronic apparatus including a printed board from miniaturization. The radiator mechanism is comprised of a cooling fan and a through hole provided in a motherboard, thereby thermally protecting a variety of circuit components mounted on the motherboard to provide a stable operation.
Abstract:
A power supply controlling integrated circuit device have detection input terminals for receiving the voltages of a plurality of cells and a plurality of comparing means for comparing the voltages of the individual cells with a predetermined reference voltage. To control discharging or charging of the cells in accordance with the outputs of the comparing means, a mode terminal is provided for receiving a signal for designating the number of cells. Also provided are a first circuit that can forcibly bring part of the comparing means into a predetermined output state in accordance with the signal received at the mode terminal and a second circuit for excluding from monitoring the outputs of those comparing means which have been brought into the predetermined output state. This enables the power supply monitoring integrated circuit device to control different numbers of cells without requiring any separately-mounted component or the like.
Abstract:
A battery charger outputs a high voltage even when a power supply device having a rechargeable battery is not connected to the battery charger so that the battery charger can supply the high voltage to the power supply device whenever the power supply device is connected to the output terminal of the battery charger. This battery charger has periodic signal producing means for supplying a periodically varying periodic signal to the output terminal by charging and discharging a capacitor connected to the output terminal, and detecting means for checking whether the power supply device is connected to the battery charger or not by checking through a filter whether the periodic signal is present at the output terminal or not. Thus, although the battery charger has no mechanical switch, it can detect the presence of the power supply device.
Abstract:
A power supply unit has an output transistor and two resistors connected in series between a power source line and a ground potential point. The output electrode of the output transistor is connected to an output terminal. Between the output terminal and the ground potential point, a capacitor is connected. When a starting switch is turned on, the output transistor starts conducting. A current limiting circuit is also provided to limit the current that flows through the output transistor when it starts conducting. The current limiting circuit bypasses part of the output current of a comparator to the ground potential point.