Abstract:
Provided are an optical transmission apparatus and method using a light source for wavelength division multiplexing (WDM) optical communication that employs a Fabry-Perot laser diode (F-P LD) whose output wavelength is locked by an externally injected incoherent light, a multifiber, and a waveguide grating router. The light transmission apparatus includes: an incoherent light source (ILS) outputting incoherent light; a plurality of circulators (CIRs) connected to the ILS, receiving the incoherent light from the ILS, and outputting first optical signals; a first waveguide grating router (WGR) outputting the first optical signals output from each of the CIRs to optical fibers corresponding to each of the CIRs, and outputting second optical signals input from the optical fibers to the corresponding CIRs; a plurality of second WGRs corresponding to each of the CIRs, and demodulating the second optical signals output from each of the plurality of CIRs; and a plurality of receivers connected to the plurality of the second WGRs, and inputting the demultiplexed optical signals output from the plurality of second WGRs. A plurality of light sources for WDM optical communication whose output wavelength is locked can increase size and economical efficiency of a light transmission system (subscriber). The N×N WGR can produce a conventional light transmission system and accommodate many subscribers.
Abstract:
Provided is a multi-ring network operating method of cross-connecting at least two ring networks, the method including connecting an input working ring and an input protection ring of a ring network to an output working ring and an output protection ring of another ring network and then performing cross-connection between the same or different ring networks by using a multi-dimensional cross-connect apparatus. In the multi-ring operating method, a plurality of ring networks can be connected regardless of the protection method used by the ring networks, and the original protection method of each ring network can remain after they are connected.
Abstract:
A wavelength allocation method and apparatus that is capable minimizing the number of wavelength converters is provided. In a dynamic wavelength multiplexing division network structure having a limited maximum transmission distance, an optical path is established to maximally suppress activation of a 3R wavelength converter, thereby maximizing efficiency of the 3R wavelength converter. In a dynamic wavelength multiplexing division network structure having a limited maximum transmission distance, a new optical path is established to minimize 3R wavelength conversion and suppress use of unnecessary expensive 3R wavelength converters and thereby increase network efficiency.
Abstract:
In a wavelength allocation method in a wavelength division multiplexing network, a 3R wavelength converter having a limited wavelength conversion range is disposed according to a wavelength conversion band of each node, at least one path set between transmitting/receiving nodes is selected, routing paths corresponding to the number of the selected at least one path set between the transmitting/receiving nodes having a request for a new optical path generation are extracted, it is determined whether there is a wavelength consecutive segment set that satisfies a maximum transmission distance for guaranteeing transmission quality of an optical signal and that includes one consecutive wavelength among the extracted routing paths, and a path using a first-fit wavelength is selected from paths of each wavelength consecutive segment and the wavelength is allocated when determining that there is a wavelength consecutive segment set.
Abstract:
The present invention relates to an apparatus and method for automatically correcting a bias voltage for a carrier suppressed pulse generating modulator using the phase distribution of the output pulses, which automatically detects an optimal bias voltage for the carrier suppressed pulse generating modulator and stabilizes the bias voltage.In the bias voltage automatic correction method and apparatus of the present invention, an optimal bias voltage for the modulator is set to a bias voltage that is obtained when mean power of an optical signal output from the modulator is highest. The varying direction of the bias voltage is detected on the basis of the phase variations in the output optical signal of the modulator according to the bias voltage variations is detected, and the bias voltage is corrected oppositely to the varying direction of the bias voltage.
Abstract:
A tunable high-order Bessel low pass filter which is applied to a multi-rate duobinary generation system of an optical communication system. The tunable Bessel low pass filter comprises a variable inductor circuit including a plurality of variable inductors connected in series between an input signal terminal and an output signal terminal and controlled respectively by corresponding inductance control signals, a variable capacitor circuit including a plurality of variable capacitors connected respectively between corresponding connection nodes of the plurality of variable inductors of the variable inductor circuit and a ground terminal and controlled respectively by corresponding capacitance control signals, and a variable capacitor/inductor controller for outputting the corresponding capacitance control signals to the variable capacitors of the variable capacitor circuit and the corresponding inductance control signals to the variable inductors of the variable inductor circuit on the basis of preset values according to a given data rate, respectively. When the data rate of an application system is changed, the tunable Bessel low pass filter controls its filtering characteristics most appropriately to the changed data rate, so as to extend its application range and enhance performance and efficiency of the application system.
Abstract:
The optical performance monitoring apparatus includes a first optical distributor for distributing a WDM optical signal branched from an optical transmission line, a plurality of wavelength selectors, each for selecting a predetermined wavelength optical signal from the optical signal distributed, a plurality of first optical detectors, each for detecting power of the predetermined wavelength optical signal for a corresponding one of channels selected by the wavelength selectors; and a signal processor for measuring the power for each channel of the WDM optical signal, a total ASE noise power, and an optical signal-to-noise ratio for each channel from the digital value.
Abstract:
An apparatus and a method for modulating the optical intensity, with the noises suppressed by using a linear optical modulator, are disclosed, so that the characteristics of signals transmitted from an optical communication system can be improved, and that the resolution of the measured physical quantities can be improved in an optical measuring instrument. The method is carried out in the following manner. That is, the magnitude of frequency is measured by utilizing pilot signals and electrical signals to transfer negatively fed-back signals to an optical intensity modulator. The phase is delayed by generating pilot signals so as to suppress an amplitude noise from the pilot signal caused by nonlinear modulation at the optical intensity modulator. A linear modulation is carried out on the phase-delayed signals and on optical signals from an external source to provide a linear component. The bias voltage is adjusted in accordance with the negatively fed-back signals, and an optical intensity modulation is carried out on the linearly modulated signals and on the added signals, the added signals having been formed by combining the data signals and the pilot signals.
Abstract:
A multistage optical packet switching apparatus with self electro-optic-effect device is disclosed. The apparatus is formed with multistage structure using a plurality of symmetrical self electro-optic-effect devices, self-routing being performed by the control for a header part of optical packets after self-duplication and amplification for the input optical signal. The optical packet switching apparatus using a plurality of symmetrical self electro-optic-effect devices includes a front stage having first and second self electro-optic-effect devices interconnected and a back stage having third and fourth self electro-optic-effect devices interconnected, the 1.quadrature. multistage structure comprising the unit switching modules interconnected each comprising the front and the back stages, the self-duplication and amplification being performed in the front stage and the switching being performed in the back stage. The use of the apparatus is an optical exchange.