SYSTEM AND METHOD FOR SAMPLING NETWORK TRAFFIC
    52.
    发明申请
    SYSTEM AND METHOD FOR SAMPLING NETWORK TRAFFIC 有权
    用于采集网络交通的系统和方法

    公开(公告)号:US20100161791A1

    公开(公告)日:2010-06-24

    申请号:US12342957

    申请日:2008-12-23

    CPC classification number: H04L43/04 H04L43/022 H04L43/026 H04L43/062

    Abstract: Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a plurality of flow records, calculating a hash for each flow record based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, and sampling flow records having a quasi-random number below a probability P. Invariant parts of flow records include destination IP address, source IP address, TCP/UDP port numbers, TCP flags, and network protocol. A plurality of routers can uniformly calculate hashes for flow records. Each router in a plurality of routers can generate a same quasi-random number for each respective flow record and uses different values for probability P. The probability P can depend on a flow size. The method can divide the quasi-random number by a maximum possible hash value.

    Abstract translation: 本文公开了系统,计算机实现的方法和用于对网络业务进行采样的计算机可读介质。 该方法包括:接收多个流记录,基于相应流的一个或多个不变部分计算每个流记录的散列,从针对每个相应流记录的计算出的散列生成准随机数,以及对具有 低于概率P的准随机数。流记录的不变部分包括目的地IP地址,源IP地址,TCP / UDP端口号,TCP标志和网络协议。 多个路由器可以统一计算流记录的哈希值。 多个路由器中的每个路由器可以为每个相应的流记录生成相同的准随机数,并对概率P使用不同的值。概率P可以取决于流量大小。 该方法可以将准随机数除以最大可能的哈希值。

    Algorithms and Estimators for Summarization of Unaggregated Data Streams
    53.
    发明申请
    Algorithms and Estimators for Summarization of Unaggregated Data Streams 失效
    用于汇总未分类数据流的算法和估计器

    公开(公告)号:US20090303901A1

    公开(公告)日:2009-12-10

    申请号:US12136725

    申请日:2008-06-10

    CPC classification number: H04L43/024

    Abstract: The invention relates to streaming algorithms useful for obtaining summaries over unaggregated packet streams and for providing unbiased estimators for characteristics, such as, the amount of traffic that belongs to a specified subpopulation of flows. Packets are sampled from a packet stream and aggregated into flows and counted by implementation of Adaptive Sample-and-Hold (ASH) or Adaptive NetFlow (ANF), adjusting the sampling rate based on a quantity of flows to obtain a sketch having a predetermined size, the sampling rate being adjusted in steps; and transferring the count of aggregated packets from SRAM to DRAM and initializing the count in SRAM following adjustment of the sampling rate.

    Abstract translation: 本发明涉及用于在未分组的分组流上获得摘要的用于提供用于特征的无偏估计器的流式传输算法,例如属于指定的流量子群的业务量。 分组从分组流中采样并聚合成流,并通过实施自适应采样保持(ASH)或自适应净流(ANF)进行计数,根据流量调整采样率,以获得具有预定尺寸的草图 采样率逐步调整; 并将汇总数据包从SRAM传输到DRAM,并在采样率调整后初始化SRAM中的计数。

    Algorithms and Estimators for Summarization of Unaggregated Data Streams
    54.
    发明申请
    Algorithms and Estimators for Summarization of Unaggregated Data Streams 失效
    用于汇总未分类数据流的算法和估计器

    公开(公告)号:US20090303879A1

    公开(公告)日:2009-12-10

    申请号:US12136705

    申请日:2008-06-10

    Abstract: The invention relates to streaming algorithms useful for obtaining summaries over unaggregated packet streams and for providing unbiased estimators for characteristics, such as, the amount of traffic that belongs to a specified subpopulation of flows. Packets are sampled from a packet stream and aggregated into flows and counted by implementation of: (a) Adaptive Sampled NetFlow (ANF), and adjusted weight (AANF) of a flow (f) is calculated as follows: AANF(f)=i(f)/p′; i(f) being the number of packets counted for a flow f, and p′ being the sampling rate at end of a measurement period; or (b) Adaptive Sample-and-Hold (ASH), and adjusted weight (AASH) of a flow (f) is calculated as follows: AASH(f)=i(f)+(1−p′)/p′; i(f) being the number of packets counted for a flow f, and p′ being the sampling rate at end of a measurement period.

    Abstract translation: 本发明涉及用于在未分组的分组流上获得摘要的用于提供用于特征的无偏估计器的流式传输算法,例如属于指定的流量子群的业务量。 分组从分组流中采样并聚合成流,并通过实现计算:(a)自适应采样NetFlow(ANF)和流(f)的调整权重(AANF)计算如下:AANF(f)= i (f)/ p'; i(f)是流f计数的分组数,p'是测量周期结束时的采样率; 或(b)自适应采样保持(ASH)和流(f)的调整权重(AASH)如下计算:AASH(f)= i(f)+(1-p')/ p' ; i(f)是流f计数的分组数,p'是测量周期结束时的采样率。

    Adaptive defense against various network attacks
    55.
    发明授权
    Adaptive defense against various network attacks 有权
    针对各种网络攻击的自适应防御

    公开(公告)号:US07587761B2

    公开(公告)日:2009-09-08

    申请号:US11216972

    申请日:2005-08-31

    CPC classification number: H04L63/1408 H04L63/1441 H04L2463/141

    Abstract: An apparatus for optimizing a filter based on detected attacks on a data network includes an estimation means and an optimization means. The estimation means operates when a detector detects an attack and the detector transmits an inaccurate attack severity. The estimation means determines an accurate attack severity. The optimization means adjusts a parameter and the parameter is an input to a filter.

    Abstract translation: 基于检测到的对数据网络的攻击来优化过滤器的装置包括估计装置和优化装置。 当检测器检测到攻击并且检测器发送不准确的攻击严重性时,估计装置进行操作。 估计装置确定准确的攻击严重性。 优化方法调整参数,参数是过滤器的输入。

    Optimal combination of sampled measurements
    57.
    发明申请
    Optimal combination of sampled measurements 有权
    采样测量的最佳组合

    公开(公告)号:US20070016666A1

    公开(公告)日:2007-01-18

    申请号:US11488874

    申请日:2006-07-18

    Abstract: Two regularized estimators that avoid the pathologies associated with variance estimation are disclosed. The regularized variance estimator adds a contribution to estimated variance representing the likely error, and hence ameliorates the pathologies of estimating small variances while at the same time allowing more reliable estimates to be balanced in the convex combination estimator. The bounded variance estimator employs an upper bound to the variance which avoids estimation pathologies when sampling probabilities are very small.

    Abstract translation: 公开了避免与方差估计相关的病理学的两个正则化估计。 正则化方差估计器对代表可能误差的估计方差增加了一个贡献,从而改善了估计小变异的病态,同时允许在凸组合估计中平衡更可靠的估计。 有界方差估计器采用方差的上限,避免了当抽样概率非常小时的估计病变。

Patent Agency Ranking