Abstract:
A system for providing a tree topology for a network having an interior gateway protocol. A first router receives a hello message from all connected routers in the network. The hello messages include tree topology information. The first router then uses the tree topology information to determine a parent of the router. The first router then establishes connections with directly connected routers at the same level in the tree topology. The first router also generates link messages that include all of the prefixes for children of the first router and broadcasts the link messages.
Abstract:
Each mobile ad hoc node has an assigned hierarchy position within an identified tree-based aggregation group. Each ad hoc node is configured for selectively attaching to one of a plurality of available ad hoc nodes based on identifying a best match, for the assigned hierarchy position within the identified aggregation group, from among identifiable hierarchy positions of identifiable aggregation groups. Each ad hoc node also is configured for selectively attaching to any available ad hoc node based on a determined absence of any available ad hoc node advertising the identified aggregation group of the ad hoc node, or an aggregation group containing the identified aggregation group. Hence, a root node of an aggregation group can filter group-specific routing information from packets destined toward a network clusterhead, resulting in a scalable routing protocol that is not adversely affected by added nodes.
Abstract:
The present disclosure generally provides techniques for establishing a unique, ephemeral home address (hoa)/home agent address (ha′) address pair that may be limited to use in a session having a defined lifetime. Limiting the use of this dynamic address pair to a session lifetime and by preventing a mobile node from knowing the static address of a home agent may help protect the home agent from attacks.
Abstract:
Each router in a network is configured for executing a link state routing protocol based on outputting a corresponding first link state advertisement message describing a connected link of the router and that specifies a first dynamic routing metric identifying a first cost of the connected link, and a corresponding variation metric identifying a statistical variation of the dynamic routing metric. Each router also is configured for selectively outputting a corresponding second link state advertisement message describing the connected link and that specifies the corresponding variation metric and an updated dynamic routing metric identifying an updated cost of the connected link relative to the first cost, the second link state advertisement message selectively output based on the updated dynamic routing metric differing from the first dynamic routing metric by more than the variation metric, or the router having received another link state advertisement from another router in the network.
Abstract:
Routers of a content network include routing entries that specify aggregation levels, enabling the routers to establish a tree-based topology within an aggregation realm for distribution of broadcast packets. Each router is configured to have a prescribed aggregation level within the aggregation realm, and identify a network-directed broadcast packet based on detecting a prescribed pluricast code at a corresponding prescribed prefix location relative to the prescribed aggregation level. Each router also is configured for storing a registration request within its routing entries, and propagating the registration request to other routers within the aggregation realm. Each registration request includes a bit mask according to one of the prescribed aggregation levels. Hence, client-based registration requests can be propagated throughout the aggregation realm for rules-based coalescence of subscriber groups throughout the aggregation realm.
Abstract:
In one embodiment, a first router attaches to an attachment router based on detecting a first router advertisement message specifying an attachment prefix and a first tree information option. The first tree information option includes a first IP host address of a first clusterhead having established a first tree topology. The first router receives a second advertisement from a second router specifying a second address prefix, distinct from the attachment prefix and the first address prefix of the first router, and a second tree information option specifying a second IP host address of a second clusterhead having established a second distinct tree topology. If the first and second routers are at equal depths relative to the respective first and second clusterheads, routing information is shared, including first address prefix reachable via the first router, and a host route for reaching the first IP host address via the first router.
Abstract:
Each mobile ad hoc node has an assigned hierarchy position within an identified tree-based aggregation group. Each ad hoc node is configured for selectively attaching to one of a plurality of available ad hoc nodes based on identifying a best match, for the assigned hierarchy position within the identified aggregation group, from among identifiable hierarchy positions of identifiable aggregation groups. Each ad hoc node also is configured for selectively attaching to any available ad hoc node based on a determined absence of any available ad hoc node advertising the identified aggregation group of the ad hoc node, or an aggregation group containing the identified aggregation group. Hence, a root node of an aggregation group can filter group-specific routing information from packets destined toward a network clusterhead, resulting in a scalable routing protocol that is not adversely affected by added nodes.
Abstract:
Mobile routers in a tree-based network topology with a single clusterhead in an ad hoc network establish connectivity based on each attached mobile router sending a neighbor advertisement message to an attachment mobile router via a corresponding egress interface. Any neighbor advertisement message received by a mobile router is used to identify specified network prefixes that are reachable via the source of the neighbor advertisement message. Each attached mobile router outputs to its attachment router another neighbor advertisement message that specifies the network prefix used by the mobile router, and the specified network prefixes from its attached mobile routers. The mobile router also identifies peer mobile routers having the same depth, and selectively shares limited routing information with the peer routers, enabling the mobile router to bypass the clusterhead and reach remote prefixes via the peer routers without burdening the tree.
Abstract:
In one embodiment, a node (e.g., a router) performs reservations for data flows, each on a corresponding selected (reserved) path having adequate reservation availability. Also, the node forwards data from data flows, each over a corresponding selected (forwarded) path having adequate load availability, wherein forwarded paths are decoupled from reserved paths for the data flows.
Abstract:
In one embodiment, a method includes receiving an inbound data packet over a wireless link at a wireless intermediate network node. The inbound data packet indicates the packet was transmitted by a node at an edge of the mesh. The inbound data packet is associated with a low priority minimum wait interval and a low priority maximum wait interval for reducing contention on the wireless link. An outbound data packet based on the first data packet is transmitted over the wireless link after a wait time. The wait time is based on a high priority minimum wait interval and a high priority maximum wait interval for reducing contention. The low priority minimum wait interval is greater than the high priority minimum wait interval. These techniques allow long packet queues at the edge but quickly clear packets already forwarded by the mesh.