NUCLEIC ACID SEQUENCING BY SYNTHESIS USING MAGNETIC SENSOR ARRAYS

    公开(公告)号:US20220193670A1

    公开(公告)日:2022-06-23

    申请号:US17602319

    申请日:2020-04-08

    摘要: Disclosed herein are apparatuses for nucleic acid sequencing, and methods of making and using such apparatuses. In some embodiments, the apparatus comprises a magnetic sensor array comprising a plurality of magnetic sensors, each of the plurality of magnetic sensors coupled to at least one address line, and a fluid chamber adjacent to the magnetic sensor array, the fluid chamber having a proximal wall adjacent to the magnetic sensor array. In some embodiments, a method of sequencing nucleic acid using the apparatus comprises (a) coupling a plurality of molecules of a nucleic acid polymerase to the proximal wall of the fluid chamber; (b) in one or more rounds of addition, adding, to the fluid chamber, (i) a nucleic acid template comprising a primer binding site and an extendable primer, and (ii) a first magnetically-labeled nucleotide precursor comprising a first cleavable magnetic label, a second magnetically-labeled nucleotide comprising a second cleavable magnetic label, a third magnetically-labeled nucleotide comprising a third cleavable magnetic label, and a fourth magnetically-labeled nucleotide comprising a fourth cleavable magnetic label; and (c) sequencing the nucleic acid template, wherein sequencing the nucleic acid template comprises, using the at least one address line, detecting a characteristic of at least a portion of the magnetic sensors in the magnetic sensor array, wherein the characteristic indicates which of the first, second, third, or fourth magnetically-labeled nucleotide precursors has been incorporated into the extendable primer. In some embodiments, a method of sequencing nucleic acid using the apparatus comprises (a) binding a nucleic acid strand to the proximal wall; (b) in one or more rounds of addition, adding, to the fluid chamber, (i) an extendable primer, and (ii) a plurality of molecules of a nucleic acid polymerase; (c) adding, to the fluid chamber, a first magnetically-labeled nucleotide precursor comprising a first cleavable magnetic label; and (d) sequencing the nucleic acid template, wherein sequencing the nucleic acid template comprises, using the at least one address line, detecting a characteristic of at least a first portion of the magnetic sensors in the magnetic sensor array, wherein the characteristic indicates that the first magnetically-labeled nucleotide precursor has bound to at least one molecule of the plurality of molecules of the nucleic acid polymerase or has been incorporated into the extendable primer. In some embodiments, a method of manufacturing a nucleic acid sequencing device having at least one fluid chamber configured to contain fluid comprises fabricating a first addressing line on a substrate, fabricating a plurality of magnetic sensors, each magnetic sensor having a bottom portion and a top portion, wherein each bottom portion is coupled to the first addressing line, depositing a dielectric material between the magnetic sensors, fabricating a plurality of additional addressing lines, each of the plurality of additional addressing lines coupled to the top portion of a respective magnetic sensor of the plurality of magnetic sensors, and removing a portion of the dielectric material adjacent to the plurality of magnetic sensors to create the at least one fluid chamber.

    ELECTRICAL ENHANCEMENT OF BILAYER FORMATION

    公开(公告)号:US20210310064A1

    公开(公告)日:2021-10-07

    申请号:US17304455

    申请日:2021-06-21

    IPC分类号: C12Q1/6869 G01N33/487

    摘要: A method of forming a plurality of lipid bilayers over an array of cells in a nanopore based sequencing chip is disclosed. Each of the cells comprises a well. A salt buffer solution is flowed over the array of cells in the nanopore based sequencing chip to substantially fill the wells in the cells with the salt buffer solution. A lipid and solvent mixture is flowed over the array of cells to deposit the lipid and solvent mixture over at least some of the wells in the cells. A first portion of the cells, each having a lipid bilayer over its well, is detected. A second portion of the cells, each having a lipid membrane but not a lipid bilayer over its well, is detected. An electrical lipid-thinning stimulus is selectively applied to the second portion of the cells but not to the first portion of the cells.