Abstract:
A method and system is disclosed for setting forward-link power for an access terminal operating in a coverage area of a wireless communication system, whereby power is redistributed from access terminals operating in the same coverage area and having forward-link power in excess of their needs for maintaining acceptable service quality, to an access terminal that is in need of additional forward-link power in order to attain a desired or required level of service quality. Following a determination that a given access terminal is requesting a forward-link transmission power level that exceeds a first threshold power level, a number of other access terminals are identified as each having requested a respective decrease in forward-link transmission power level by an amount at least as large as a respective threshold amount. Forward link power to the given access terminal is then increased by an incremental amount, and the forward-link transmission power level to each of the number of other access terminals is decreased by a respective decremental amount, wherein the sum of all the respective decremental amounts equals at least the incremental amount.
Abstract:
A method of selecting a type of resource-allocation to use for a call in a cellular wireless system, such as selecting a type of radio configuration to use for the call. According to the method, resource-availability in one more adjacent coverage areas may be used as a basis to select the type of resource-allocation to use in a current coverage area. For instance, given the choice between a radio configuration that consumes less base station power and a radio configuration that consumes more base station power, the radio configuration consuming more base station power may be selected if base station sufficient power is available in one or more adjacent coverage area(s), and the other radio configuration may be selected if insufficient base station power is available in the one or more adjacent coverage area(s). Distance between the mobile station and a current base station may be considered as well.
Abstract:
Disclosed is a method and device for managing handoff of an access terminal in a radio access network (RAN). An access terminal may detect a handoff trigger, determine whether there is an ongoing data transfer in progress, determine an amount remaining in the data transfer, compare the amount remaining to a threshold amount, and delay or cancel the handoff if the amount remaining is below the threshold amount. Additionally, the access terminal may consider signal strength of the current (source) coverage area in determining whether to delay or cancel the handoff.
Abstract:
Disclosed herein is a method for improved paging in a wireless communication system. In a scenario where base stations broadcast congestion indicators to prevent mobile stations from registering in coverage areas that are experiencing threshold congestion, the method provides for a new form of zone based paging that accounts for the possibility that a mobile station has entered into a new zone but has not yet registered due to a threshold congestion state. According to the method, a paging attempt will be directed to the mobile station's zone of last registration and to only those coverage areas in at least one adjacent paging zone that are deemed to be experiencing threshold congestion.
Abstract:
Systems, methods, and software for operating a wireless communication device are provided herein. In a first example, a method of operating a wireless communication device is provided. The method includes receiving user content and advertising content over a wireless link from a wireless communication network, and responsive to user input on the wireless communication device, altering a first resource portion associated with the wireless communication device for handling of the advertising content and altering a second resource portion associated with the wireless communication device for handling of the user content.
Abstract:
A method and apparatus for improved idle handoff a mobile station in a wireless communication system. While idling in a particular sector of the system, the mobile station will select a target sector based on a determination that the target sector has the same number of channels as the current sector, such as the same number of paging channels and perhaps the same number of frequency channels as the current sector. The mobile station will then engage in an idle handoff from the current sector to the selected target sector. By striving to hand off to a sector that has the same number of channels, particularly the same number of paging channels, the mobile station may avoid having to hash onto a channel in the target sector and may thereby minimize the likelihood of missing a page message sent while the mobile station was busy hashing onto the channel.
Abstract:
A method and system for dynamically controlling the transmission of reverse-link control signals to help reduce interference on the reverse link. A RAN identifies a mobile device whose transmission of reverse-link control signals best represents the reverse-link air interface condition of each other mobile device in a plurality of mobile devices. Then the RAN causes each mobile device in the plurality other than the identified mobile device to not send its respective reverse-link control signal at a given time, thereby reducing the number of mobile devices that transmit reverse-link control signals at the given time.
Abstract:
A controller monitors resource usage in each of a plurality of sectors and identifies any sector with resource usage that exceeds a threshold value as a high usage sector. The controller evaluates the mobile stations in its area and identifies any mobile station that is using a high usage sector and at least two other sectors for a communication session as a candidate mobile station. The controller applies a predictive algorithm to determine whether any candidate mobile station is able to continue its respective communication session without using its respective high usage sector. In this determination, the signal levels that a mobile station reported for the sectors in its active set, other than the high usage sector, may be used to calculate a combined signal level. If the combined signal level exceeds a predefined value, the mobile station is instructed to drop the high usage sector.
Abstract:
A power control command (PCC) transmission scheme is disclosed. In one embodiment, the PCC transmission scheme may involve an access network engaging in a respective communication session with each of a plurality of access terminals on a given wireless link and sending a respective series of PCCs directed to each of the plurality of access terminals on the given wireless link. Based on a power utilization of the given wireless link, the access network may then decide to adjust a transmission rate at which to send PCCs directed to a set of access terminals in the plurality of access terminals. In turn, the access network may send the respective series of PCCs directed to each of the set of access terminals at the adjusted transmission rate.
Abstract:
A first wireless network serves a wireless device and generates loading information. A second wireless network also serves the wireless device and also generates loading information. The first and second wireless networks share a plurality of wireless access points. A paging system receives a page request for the wireless device for delivery over the first network. The paging system processes the loading information to determine if paging assistance from the second network is applicable. If so, the paging system transfers a first page to the second network for delivery to the wireless device. The paging system receives a page response from the wireless device over the second network and processes the response to identify the shared wireless access point serving the wireless device. The paging system transfers a second page to the first wireless network for delivery to the wireless device through the identified shared wireless access point.