Abstract:
This invention relates to a coaltar pitch based carbon fiber having a high Young's modulus produced by using coaltar pitch as a starting material, which has a microstructure with a preferred orientation parameter (HWHM) of 10.degree. or less, a crystallite size (Lc(002)) of not more than 25 nm and not less than 18 nm and an interlayer spacing (d002) of not more than 0.345 nm and not less than 0.338 nm as determined by X-ray diffraction, and has a magnetoresistance of less than -0.40% and not less than -2.00% as measured by applying a magnetic field of 10 KG perpendicular to the fiber axis at liquid nitrogen temperature, and a Young's modulus of 55 ton.multidot.mm.sup.-2 or more, preferably 75 ton.multidot.mm.sup.-2 or more. The carbon fiber of this invention has a high Young's modulus, is flexible, and does not split in the fiber axis direction, and therefore it is easy to handle, is good in workability, and contributed also to improvement of the production efficiency. Further, when the carbon fiber of this invention is used in composite material, the resulting composite material can be expected to have an improved impact strength and hence can be used for various purposes.
Abstract:
This invention relates to a method of removing sulfur and nitrogen oxides by a dry process comprising passing a waste gas through a moving bed formed of a carbonaceous adsorbent in a direction transverse thereto to remove the sulfur oxides and adding ammonia to remove the nitrogen oxides, characterized in that in a system comprising n moving beds (n being an integer of at least 2), the waste gas is passed transversely through the first moving bed, mixed with ammonia outside the first moving bed, and then fed to the second moving bed, the similar procedure being repeated in order, and finally, the waste gas is passed transversely through the n-th moving bed, while the carbonaceous adsorbent is transported from the n-th moving bed to the first moving bed in order.
Abstract:
This invention relates to a method of removing sulfur and nitrogen oxides by a dry process comprising passing a waste gas through a bed of a carbonaceous adsorbent to remove sulfur oxides and adding ammonia to remove nitrogen oxides, characterized in that at least two carbonaceous adsorbent beds are used and the carbonaceous adsorbent used mainly for removal of sulfur oxides is further used for treatment of the waste gas leaving the final carbonaceous adsorbent bed to remove the ammonia.