Abstract:
A bracket configured to be interposed between the housing of a mobile electronic device and an electrical receptacle that is disposed in the mobile electronic device. The bracket includes a bracket body, an elongated opening through the bracket and a sheath surrounding portions of the bracket body. The bracket body includes an elongated protrusion extending in a front direction from the front face of the bracket body and a pair of fastener accommodations extending through the bracket body, each fastener accommodation disposed on opposite sides of the elongated protrusion. The sheath includes a first portion surrounding a portion of the bracket body elongated protrusion and a second portion including a pair of fastener openings.
Abstract:
Embodiments of electronic wristwatches are disclosed. According to one embodiment, an electronic wristband can provide additional electrical circuitry or devices that can be made available for use as or with an electronic device. In one embodiment, the electronic device can be a mobile electronic device that can be removably coupled to the electronic wristband which provides the additional circuitry or devices. Advantageously, the electronic device can utilize the additional electrical circuitry or devices provided within the electronic wristband to augment the capabilities of the electronic device. In another embodiment, the electronic device can be integrally formed with the electronic wristband which provides the additional circuitry or devices.
Abstract:
A bracket configured to be interposed between the housing of a mobile electronic device and an electrical receptacle that is disposed in the mobile electronic device. The bracket includes a bracket body, an elongated opening through the bracket and a sheath surrounding portions of the bracket body. The bracket body includes an elongated protrusion extending in a front direction from the front face of the bracket body and a pair of fastener accommodations extending through the bracket body, each fastener accommodation disposed on opposite sides of the elongated protrusion. The sheath includes a first portion surrounding a portion of the bracket body elongated protrusion and a second portion including a pair of fastener openings.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
A plug connector with external contacts is provided. The connector has one pair of contacts for transmitting data and one pair of contacts for receiving data. All data transmitted and received using the plug connector is serialized/de-serialized to enable data transmission at a very high rate. A corresponding receptacle connector has configurable contacts that are configured based on the orientation of the plug connector with respect to the receptacle connector. The receptacle connector may be included in a host device and has associated circuitry to detect orientation of the plug connector and to configure the contacts of the receptacle connector.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
A system may have windows. Each window may have inner and outer glass layers laminated together with polymer. Optical component layers may be incorporated into the polymer or the polymer may be free of embedded components. To avoid mismatch between adjacent window edges in systems with multiple adjacent windows, adjacent windows may be formed from shared-cut-edge-matched window panel sections that are cut from a common window panel. Windows may be formed from a single portion of laminated glass or may be formed by joining multiple smaller pieces of laminated glass together along a seam.