Abstract:
A method and apparatus are disclosed from the perspective of a network. In one embodiment, the method includes the network configuring a first serving cell and a second serving cell to a UE, wherein a first PDCCH scheduling a first PDSCH on the first serving cell and a second PDCCH scheduling a second PDSCH on the second serving cell are transmitted via a CORESET of the second serving cell. The method further includes the network not configuring a CORESET configuration for the first serving cell. Furthermore, the method includes the network indicating the UE to receive and/or monitor the first PDCCH based on CORESET configuration of the second serving cell.
Abstract:
A method and apparatus for implementing reference signal transmissions in a wireless communication system. In one embodiment, the method includes the cell, transmission point (TP), or transmission and reception point (TRP) broadcasting a first RS periodically for measurement, wherein the first RS is transmitted at multiple occasions (or timings) in each period on different beams. The method also includes the cell, TP, or TRP transmitting a second RS to a UE for PDCCH demodulation, wherein the second RS is transmitted on multiple beams in a beam set of the UE in a subframe (or symbol) in which the PDCCH is transmitted.
Abstract:
A method and apparatus are disclosed from the perspective of a network node. In one embodiment, the method includes the network node transmitting a first slot format information (SFI) to a User Equipment (UE), wherein the first SFI indicates transmitted direction of symbols of a first set of slots. The method also includes the network node transmitting a second SFI carried by a group common physical downlink control channel (PDCCH) to the UE, wherein the second SFI indicates transmitted direction of symbols of a second set of slots, and wherein if the first set of slots and the second set of slots are partially overlapped in time domain and the second SFI is transmitted after the first SFI, transmitted direction of overlapped symbols indicated by the second SFI is aligned with transmitted direction of the overlapped symbols indicated by the first SFI.
Abstract:
Methods and apparatuses for beam management with user equipment beam sweeping in a wireless communication system are disclosed herein. In one method, a network node transmits a reference signal for beam management within one occasion, wherein the occasion comprises at least M symbol sets. The network node performs beam sweeping for transmitting the reference signal in a first symbol set of the M symbol sets. The network node repeats the beam sweeping for transmitting the reference signal in the rest of the M symbol sets.
Abstract:
A method and apparatus are disclosed, from the perspective of a UE, for transmitting UL RS. In one embodiment, the method includes deriving a first transmit power of a first UL RS based on a first power control mechanism, wherein derivation of the first transmit power based on the first power control mechanism is associated with an uplink data channel. In addition, the method includes deriving a second transmit power of a second UL RS based on a second power control mechanism, wherein derivation of the second transmit power based on the second power control mechanism is not associated with the uplink data channel. Furthermore, the method includes transmitting the first UL RS with the first transmit power. The method also includes transmitting the second UL RS with the second transmit power.
Abstract:
Techniques for receiving control channel for multiple numerologies are disclosed. The UE receives a control channel by using a first numerology and receives a first data channel information by using a second numerology. The UE also receives a second data channel information by using the first numerology. Also, different numerologies and bandwidth portions are used for communicating data channel information and HARQ feedback respectively.
Abstract:
Methods and apparatuses for determining numerology bandwidth in a wireless communication system are disclosed herein. In one method, a user equipment receives information for a numerology. The information comprises a frequency location and a bandwidth. The UE derives a resource allocation for the numerology based on the frequency location and the bandwidth.
Abstract:
A method and apparatus are disclosed from the perspective of a UE capable of performing UE beamforming. In one embodiment, the method includes the UE receiving a control signaling on a first set of UE beam(s). In addition, the method includes the UE receiving a data transmission scheduled by the control signaling on a second set of UE beam(s), wherein the UE receives the data transmission with a time delay after receiving the control signaling.
Abstract:
Facilitation detection of control channels with different transmission time intervals (TTIs) in wireless communications systems is described herein. In one example, a computer-implemented method comprises: monitoring, by a mobile device comprising a processor, a first control channel in the beginning of a first TTI; and receiving, by the mobile device, a first downlink control information (DCI) on the first control channel in the first TTI, wherein information of the first DCI indicates a pattern of a second TTI associated with a second control channel, and wherein the second control channel occurs later than the first control channel and the second TTI is shorter than the first TTI. The computer-implemented method can also comprise determining, by the mobile device, whether to monitor the second control channel of the second TTI based on the information of the first DCI.
Abstract:
A method and apparatus for delivery of control signaling in a wireless communication system are disclosed. In one embodiment, the method includes communicating with a UE (User Equipment) in the cell via downlink and uplink transmissions, wherein the downlink and uplink transmissions are organized into radio frames and each radio frame contains multiple subframes and each subframe contains multiple symbols. The method also includes transmitting, in the cell, a UE specific signal in a first symbol of a downlink control region of a subframe of the multiple subframes, wherein the network node is not allowed to transmit a common signal in the first symbol.