Abstract:
One or more strain sensors can be included in an electronic device. Each strain sensor includes a strain sensitive element and one or more strain signal lines connected directly to the strain sensitive element. The strain sensor(s) are used to detect a force that is applied to the electronic device, to a component in the electronic device, and/or to an input region or surface of the electronic device. A strain sensitive element is formed or processed to have a first gauge factor and the strain signal line(s) is formed or processed to have a different second gauge factor. Additionally or alternatively, a strain sensitive element is formed or processed to have a first conductance and the strain signal line(s) is formed or processed to have a different second conductance.
Abstract:
One or more transparent transistor force sensitive structures can be included in an electronic device. The transistor force sensitive structures(s) is used to detect a force that is applied to the electronic device, to a component in the electronic device, and/or to an input region of the electronic device. As one example, the one or more transparent transistor force sensitive structures may be included in a display stack of a display in an electronic device.
Abstract:
An optically-transparent conductive structure is disclosed. The optically-transparent conductive structure can be used within a display stack of an electronic device. The optically-transparent conductive structure may be formed by depositing a metal nanowire layer that on a surface of a polarizing layer within the display stack. An encapsulation layer is disposed over the metal nanowire layer that protects the metal nanowire from corrosion. An electrical coupling is provided through or within the encapsulation layer and electrically couples to the metal nanowire layer. The electrical coupling is connected to an electrical circuit within the electronic device.
Abstract:
An optically transparent force sensor element is compensated for effects of environment by comparing a force reading from a first force-sensitive component with a second force-sensitive components. The first and second force-sensitive components disposed on opposite sides of a flexible substrate within a display stack.
Abstract:
A transparent force sensor for detecting an applied force on a surface of a device. The transparent force sensor includes a transparent force-sensitive film having an array of strain-relief features oriented along a first direction. The transparent force-sensitive film is formed from a transparent piezoelectric material that exhibits a substantially reduced net charge when strained along a primary direction. The force sensor also includes a display element disposed on one side of the transparent force-sensitive film.
Abstract:
An electronic device may include an optical module with a display and a tunable lens. During operation, the electronic device may gather data and adjust the tunable lens based on the gathered data. The optical module may include a non-adjustable lens element with convex curvature in addition to the tunable lens. The optical module may include a Fresnel lens element in addition to the tunable lens. The optical module may include a catadioptric lens in addition to the tunable lens. The optical module may include a catadioptric lens that includes the tunable lens. The optical module may have a birdbath architecture that includes the tunable lens. The optical module may include a waveguide and the tunable lens may be an adjustable positive bias lens and/or an adjustable negative bias lens.
Abstract:
A head-mounted device may include one or more adjustable lens elements. The adjustable lens element may include a transparent substrate, a collapsible wall that forms an enclosed perimeter on the transparent substrate, and a flexible membrane on the collapsible wall that together define an interior volume. The interior volume may be filled with a fluid. The adjustable lens element may include a lens shaping component that applies a force to the collapsible wall to adjust a height of the collapsible wall relative to the transparent substrate, which in turn may be used to adjust the shape of the flexible membrane and thus the lens power of the lens element. The collapsible wall may have bellows that allow the collapsible wall to fold on itself when compressed, thereby minimizing unintended lateral movement of the collapsible wall.
Abstract:
A lens module in a head-mounted device may include a fluid-filled chamber, a semi-rigid lens element that at least partially defines the fluid-filled chamber, and at least one actuator configured to selectively bend the semi-rigid lens element. The semi-rigid lens element may become rigid along a first axis when the lens element is curved along a second axis perpendicular to the first axis. Six actuators that are evenly distributed around the periphery of the semi-rigid lens element may be used to control the curvature of the semi-rigid lens element. The semi-rigid lens element may initially be planar or non-planar. For example, the semi-rigid lens element may initially have a spherically convex surface and a spherically concave surface. A tunable spherical lens may be incorporated into the lens module to offset a parasitic spherical lens power from the semi-rigid lens element.
Abstract:
A head-mounted device may include a lens module with a least one adjustable lens. The head-mounted device may be wirelessly paired to an electronic device such as a cellular telephone, watch, laptop computer, etc. To correct for presbyopia, the optical power of adjustable lenses in a head-mounted device may be adjusted when the user is viewing a close object. To allow for intelligent adjustments of the adjustable lenses while minimizing power consumption in the head-mounted device, the head-mounted device may receive sensor data and/or focal point change instructions from a paired electronic device. The paired electronic device may detect a trigger, analyze the user's attention to the paired electronic device, and send focal point change instructions to the head-mounted device based on the obtained information.
Abstract:
A lens module may include a first lens element, a lens shaping structure that is coupled to the first lens element, and a plurality of actuators that are configured to adjust a position of the lens shaping structure to adjust the first lens element. The lens module may also include a second lens element and a fluid-filled chamber between the first and second lens elements. To allow dynamic adjustments of the second lens element without requiring additional actuators, the second lens element may be a semi-rigid lens element. When the actuators adjust the curvature of the first lens element, the gauge pressure applied to the second lens element is changed. This causes a change in curvature of the second lens element. The actuators may therefore adjust the curvature of both the first and second lens elements even though none of the actuators are attached to the second lens element.