摘要:
Disclosed are methods and apparatus for restarting a first network device having a plurality of ports for receiving and transmitting layer 2 data. The first network device belongs to a network of network devices. When a restart of at least a portion of the first network device is imminent whereby the restarting network device portion can no longer alter a spanning tree protocol (STP) state of one or more of the ports and such ports that remain in a fixed state during the restart are referred to as restarting ports, a current state (such as forwarding) of each restarting port is maintained during the restart under predefined conditions. During the restart, each of the restarting ports of the restarting network device portion cooperate with its peer port of a second non-restarting network device that is a neighbor of the first network device so as to prevent layer 2 loops in the network.
摘要:
In one embodiment, a technique for routing traffic in networks represented by logical topologies, such as Multi Chassis Port Channel (MCPC) or Multi Chassis Ether Channel (MCEC) topologies, is provided. By modifying a port priority vector (PPV) to include an additional “Switch ID” field that identifies a designated bridge ID or a local switch ID, depending on whether the corresponding port is used as an MCT, a routing protocol designed to avoid loops in routing paths, such as STP, may avoid blocking MCT ports.
摘要:
In one embodiment, a solution is provided wherein multiple virtual devices may be configured on the same physical port of a network device. For example, a first virtual device and a second virtual device may be configured to use the same physical port. A single internal spanning tree instance may be configured for both the first virtual device and the second virtual device.
摘要:
Disclosed are methods and apparatus for restarting a first network device having a plurality of ports for receiving and transmitting layer 2 data is disclosed. The first network device belongs to a network of network devices. When a restart of at least a portion of the first network device is imminent whereby the restarting network device portion can no longer alter a spanning tree protocol (STP) state of one or more of the ports and such ports that remain in a fixed state during the restart are referred to as restarting ports, a current state (such as forwarding) of each restarting port is maintained during the restart under predefined conditions. During the restart, each of the restarting ports of the restarting network device portion cooperate with its peer port of a second non-restarting network device that is a neighbor of the first network device so as to prevent layer 2 loops in the network.
摘要:
Disclosed are methods and apparatus for restarting a first network device having a plurality of ports for receiving and transmitting layer 2 data is disclosed. The first network device belongs to a network of network devices. When a restart of at least a portion of the first network device is imminent whereby STP is no longer functioning for the first network device during the restart and can no longer alter a spanning tree protocol (STP) state of one or more of the ports and such ports that remain in a fixed state during the restart are referred to as restarting ports, a current state (such as forwarding) of each restarting port is maintained during the restart under predefined conditions. During the restart, each of the restarting ports of the restarting network device portion cooperate with its peer port of a second non-restarting network device that is a neighbor of the first network device so as to prevent layer 2 loops in the network.
摘要:
A system and method for automated switching of data traffic in a network are described. Data is transmitted along a first virtual circuit among multiple virtual circuits in a network. Next, a failure is detected on the first virtual circuit. As a result, transmission of data is switched from the first virtual circuit to a second virtual circuit among the multiple virtual circuits in the network.
摘要:
A system and method runs a multiple spanning tree protocol (MSTP) in a computer network having a very large number of bridge domains. The computer network includes a plurality of intermediate network devices, each having a plurality of ports for forwarding network messages. Within each device, a plurality of bridge domains are defined, each bridge domain is identified by a Virtual Local Area Network (VLAN) Identifier (VID), and one or more device ports. For each port, a separate mapping of VIDs to Multiple Spanning Tree Instances (MSTIs), based on the bridge domains defined at the port, is established. Each mapping is converted to a port-based configuration digest, which is entered into Spanning Tree Protocol (STP) control messages sent from the respective port. Ports receiving STP control messages whose configuration digest values that match the configuration digests values computed for the ports are said to be in the same Multiple Spanning Tree region. Ports whose configuration digests differ from the configuration digests of received STP control messages are said to be in different regions.
摘要:
In one embodiment, a first switch is located at a first border between first networks that utilize a STP to detect and break loops and second networks. The first switch is interconnected via the first networks with a second switch located at a second border between the first networks and the second networks. The first switch detects, via a protocol other than STP, addition of a link in the second networks that provides a new path across the second networks between the first switch and the second switch. The first switch blocks data packets from traversing through one or more network boundary ports of the first switch coupled to the first networks, while allowing STP BPDUs to traverse through the one or more network boundary ports, for a period of time sufficient for the first networks to discover the new path using STP.
摘要:
In one embodiment, the convergence node switches of a destination node switch in a network having multiple equal paths between a source switch and destination switch are identified. When a new equal cost path is added to the network, packets are flushed up to the convergence node switch closest to the source switch.
摘要:
In one embodiment, a solution is provided wherein multiple virtual devices may be configured on the same physical port of a network device. For example, a first virtual device and a second virtual device may be configured to use the same physical port. A single internal spanning tree instance may be configured for both the first virtual device and the second virtual device.