Abstract:
Systems and methods are disclosed for speedily upgrading (e.g., via service packs) components of a storage management system, such as media agents and data agents, which may number in the thousands. The disclosed methods and systems provide a lightweight and flexible approach. Executable files such as service packs are deployed to a network-shared file system and are served on demand to each targeted host computing device to launch a data agent and/or media agent component. New service packs (e.g., upgrades) are installed on another shared drive and the connection thereto is refreshed by each targeted storage management component to begin executing the new version on demand. The resultant overall upgrade process across the storage management system may be substantially shortened, and the network burden greatly reduced.
Abstract:
A data storage system according to certain aspects can share a single snapshot for multiple applications and/or agents. For example, the data storage system can receive snapshot commands from multiple applications and/or agents, and can group them for a single snapshot (e.g., based on time of receipt of the snapshot commands). Data associated with the multiple applications and/or agents may reside on a single LUN or volume. The data storage system can take a single snapshot of the LUN or volume, and generate metadata regarding which portion of the snapshot is related to which application. The single snapshot can be stored in one or more secondary storage devices. The single snapshot may be partitioned into portions relating to different applications and stored separately.
Abstract:
Storage managers are used in data storage management systems for license distribution, compliance, and updates. A licensed quota is managed at an aggregate level applicable to a collective plurality of storage operation cells and not by licensing each individual storage operation cell. A multi-cell environment belonging to a given customer is licensed by using an enhanced storage manager in each cell. One storage manager is a “license server” to the other storage managers or “child licensees.” A licensor issues a global license to the customer's designated license server, which distributes child licenses and manages other licensing aspects. Rather than licensing usage for individual storage operation cells, licensed usage is managed at an aggregate level using the license server and child licensees in a “self-service” model.
Abstract:
Systems and methods are disclosed for speedily upgrading (e.g., via service packs) components of a storage management system, such as media agents and data agents, which may number in the thousands. The disclosed methods and systems provide a lightweight and flexible approach. Executable files such as service packs are deployed to a network-shared file system and are served on demand to each targeted host computing device to launch a data agent and/or media agent component. New service packs (e.g., upgrades) are installed on another shared drive and the connection thereto is refreshed by each targeted storage management component to begin executing the new version on demand. The resultant overall upgrade process across the storage management system may be substantially shortened, and the network burden greatly reduced.
Abstract:
An illustrative “Live Synchronization” feature creates and maintains a ready standby “synchronized application” that is available to take over as a failover solution for a “primary” application that operates in a production environment, but will do so on a different computing platform (e.g., physical server, virtual machine, container, etc.), and possibly on a differed kind of computing platform than, the primary. The illustrative system has specialized features and components for discovering and singling out each primary application and identifying and locating its disk image, e.g., VMDK file. The application is Live Synched to the standby/failover application without reference to whether and how other co-resident applications might be treated. The standby/failover destination supporting the synchronized application may be located anywhere, whether in the same data center as the primary or geographically remote or in a private or public cloud setting.
Abstract:
A data storage system, according to certain aspects, automatically determines the accuracy of replication data when performing data backup operations. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. The system automatically determines the accuracy of replication data during data backup.
Abstract:
The data storage system according to certain aspects can implement table level database restore. Table level database restore may refer to restoring a database table and its related data without restoring the entire database. The data storage system may use table metadata index to implement table level restore. A table metadata index may be created for each table, e.g., during a backup of the database. The table metadata index for a table can include any type of information for restoring the table and its related data. Some examples of the type of information included in the table metadata index include the following: container for the table, table backup location, system data, table index, table relationships, etc. Table metadata index can make the restoring of tables fast and efficient by packaging information that can be used to restore a table and its related data in an easily accessible manner.
Abstract:
The data storage system according to certain aspects can implement table level database restore. Table level database restore may refer to restoring a database table and its related data without restoring the entire database. The data storage system may use table metadata index to implement table level restore. A table metadata index may be created for each table, e.g., during a backup of the database. The table metadata index for a table can include any type of information for restoring the table and its related data. Some examples of the type of information included in the table metadata index include the following: container for the table, table backup location, system data, table index, table relationships, etc. Table metadata index can make the restoring of tables fast and efficient by packaging information that can be used to restore a table and its related data in an easily accessible manner.
Abstract:
A data storage system, according to certain aspects, automatically determines the accuracy of replication data when performing data backup operations. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. The system automatically determines the accuracy of replication data during data backup.
Abstract:
A data storage system, according to certain aspects, automatically determines the accuracy of replication data when performing data backup operations. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. The system automatically determines the accuracy of replication data during data backup.