Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
Abstract:
According to one embodiment, a coated glass package may include a glass body having a Type 1 chemical durability according to USP 660, a class A2 base resistance or better according to ISO 695, and a type HGB2 hydrolytic resistance or better according to ISO 719. The glass body may include an interior surface and an exterior surface. A lubricous coating having a thickness of ≦100 microns may be positioned on the exterior surface. The portion of the exterior surface with the coating may have a coefficient of friction that is at least 20% less than an uncoated glass package and the coefficient of friction does not increase by more than 30% after undergoing depyrogenation. A horizontal compression strength of the coated glass package is at least 10% greater than an uncoated glass package and the horizontal compression strength is not reduced by more than 20% after depyrogenation.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
Abstract:
In one embodiment, a method of forming a glass container may include forming a glass container comprising a sidewall at least partially enclosing an interior volume. At least a portion of the interior surface of the sidewall may have an interior surface layer with a persistent layer heterogeneity relative to a midpoint of the sidewall. The interior surface layer of the glass container may be removed from the interior surface of the sidewall such that a modified interior surface of the sidewall has an interior region extending from about 10 nm below the modified interior surface into a thickness of the sidewall. The interior region may have a persistent layer homogeneity relative to the midpoint of the sidewall such that the modified interior surface is resistant to delamination.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and pharmaceutical packaging formed from the same. According to one embodiment, a glass for pharmaceutical packaging includes from about 70 mol. % to about 80 mol. % SiO2; from about 4 mol. % to about 8 mol. % alkaline earth oxide, the alkaline earth oxide comprising MgO and CaO; X mol. % Al2O3, wherein X is from about 4 to about 8; and Y mol. % alkali oxide comprising non-zero amounts of Na2O and K2O, wherein Y is about 9-15 mol. % and a ratio of Y:X is greater than 1.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. According to one embodiment, the glass composition may include greater than or equal to about 68 mol. % SiO2 and less than or equal to about 80 mol. % SiO2; greater than or equal to about 3 mol. % and less than or equal to about 13 mol. % alkaline earth oxide; X mol. % Al2O3, wherein X is greater than or equal to about 4 and less than or equal to about 8; Y mol. % alkali oxide, wherein the alkali oxide comprises Na2O in an amount greater than about 8 mol %; and B2O3, wherein a ratio (B2O3 (mol. %)/(Y mol. %−X mol. %) is greater than 0 and less than 0.3. In some embodiments, the glass composition may be free of phosphorous and compounds of phosphorous.
Abstract translation:本文所述的实施方案涉及由其形成的化学和机械耐久的玻璃组合物和玻璃制品。 根据一个实施方案,玻璃组合物可以包括大于或等于约68mol。 %SiO 2和小于或等于约80mol。 %SiO2; 大于或等于约3mol。 %且小于或等于约13mol。 %碱土金属氧化物; X mol。 %Al 2 O 3,其中X大于或等于约4且小于或等于约8; Y mol。 %碱金属氧化物,其中所述碱金属氧化物包含大于约8mol%的量的Na 2 O; 和B 2 O 3,其中(B 2 O 3(摩尔%)/(Y摩尔%-X摩尔%))大于0且小于0.3。在一些实施方案中,玻璃组合物可以不含磷和磷化合物 。
Abstract:
The glass containers described herein are resistant to delamination, have improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The body may also have a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body, such that the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.
Abstract:
In one embodiment, a method of forming a glass container may include forming a glass container comprising a sidewall at least partially enclosing an interior volume. At least a portion of the interior surface of the sidewall may have an interior surface layer with a persistent layer heterogeneity relative to a midpoint of the sidewall. The interior surface layer of the glass container may be removed from the interior surface of the sidewall such that a modified interior surface of the sidewall has an interior region extending from about 10 nm below the modified interior surface into a thickness of the sidewall. The interior region may have a persistent layer homogeneity relative to the midpoint of the sidewall such that the modified interior surface is resistant to delamination.