Abstract:
A surgical instrument end effector assembly includes a first jaw member and a second jaw member. The second jaw member includes an ultrasonic blade body and first and second electrodes disposed on either side of the ultrasonic blade body and extending longitudinally along a majority of a length of the ultrasonic blade body. The ultrasonic blade body is adapted to receive ultrasonic energy from an ultrasonic waveguide. The first and second electrodes taper in width proximally to distally and are adapted to connect to a source of electrosurgical energy. The first jaw member is movable relative to the second jaw member between a spaced-apart position and an approximated position for grasping tissue therebetween.
Abstract:
An ultrasonic transducer and generator (TAG) assembly of a surgical instrument includes generator components and transducer components. The generator components are disposed within a first cavity cooperatively defined by a body portion and a cover. The generator components are covered in a thermally insulative material. The transducer components are disposed within a second cavity cooperatively defined by a proximal housing and a spinner housing.
Abstract:
A method for ultrasonically treating tissue includes accessing a surgical site with an ultrasonic surgical instrument, dissecting tissue with a first portion of the blade, and sealing tissue with a second portion of the blade. The instrument includes a blade that defines a longitudinal axis. The blade is configured to oscillate along the longitudinal axis to ultrasonically treat tissue.
Abstract:
Methods and surgical instruments are provided for determining a relative state of charge of a battery used during a surgical procedure. The surgical instrument includes an end effector configured to treat tissue with energy, and a user interface configured to receive an input. A generator is coupled to the end effector, and the battery communicates with the generator. A controller includes a processor and a memory having instructions stored thereon which, when executed by the processor, cause the processor to detect an input at the user interface. In response to the detected input at the user interface, a discharge profile is matched to the detected input. The discharge profile corresponds to a discharge curve representing current discharge over time. A relative state of charge is then identified from the discharge curve based on usage of the surgical instrument during a surgical procedure.
Abstract:
A method for sealing a vessel includes supplying electrical energy to an ultrasonic surgical instrument having an end effector and a transducer coupled to the end effector, when the end effector is grasping a vessel, sensing parameters of the vessel when the end effector achieves a predetermined velocity, estimating a size of the vessel based on the sensed parameters, controlling the electrical energy based on maintaining a predetermined initial heating rate of heating the vessel until a predetermined amount of energy corresponding to the estimated size of the vessel has been delivered, and controlling the electrical energy based on a predetermined heating rate curve of heating the vessel after the predetermined amount of energy corresponding to the estimated size of the vessel has been delivered.
Abstract:
An ultrasonic surgical apparatus and method, the apparatus including a signal generator outputting a drive signal having a frequency, an oscillating structure, receiving the drive signal and oscillating at the frequency of the drive signal, and a bridge circuit, detecting the mechanical motion of the oscillating structure and outputting a signal representative of the mechanical motion. The ultrasonic surgical apparatus also includes a microcontroller receiving the signal output by the bridge circuit, the microcontroller determining an instantaneous frequency at which the oscillating structure is oscillating based on the received signal, and determining a frequency adjustment necessary to maintain the oscillating structure oscillating at its resonance frequency, the microcontroller further determining the quality (Q value) of the signal received from the bridge circuit and determining material type contacting the oscillating structure.
Abstract:
A surgical device includes an elongated shaft having an end-effector assembly at a distal end thereof. The end-effector assembly includes movable first, second and third jaw members. The first and second jaw members controllably movable from a first position, wherein the first and second jaw members are disposed in spaced relation relative to the third jaw member disposed therebetween, to a second position, wherein the first, second and third jaw members cooperate to grasp tissue therebetween.
Abstract:
An ultrasonic surgical instrument includes a housing, a waveguide extending distally from the housing, an end effector coupled to the distal end of the waveguide, an ultrasonic transducer retained within the housing, and a controller. The ultrasonic transducer is coupled to the proximal end of the waveguide and configured to produce mechanical motion for transmission along the waveguide to the end effector. The controller is configured to control an amplitude of the mechanical motion of the ultrasonic transducer in accordance with at least one amplitude value. The at least one amplitude value is adjusted according to an age of the ultrasonic transducer to compensate for aging of the ultrasonic transducer. Methods for controlling the amplitude of the mechanical motion of an ultrasonic transducer to compensate for aging of the ultrasonic transducer are also provided.
Abstract:
Methods, systems, and devices are described for providing audio to one or more individuals in an operating room. An ultrasonic signal generator may be provided that generates two or more ultrasonic signals that combine to produce an audible signal at a desired location. The audio signal may be perceived by individuals in the operating room to emanate from a surface or location within the operating room, or the audio signal may be generated to provide an audible signal to one or more persons within a particular location within the operating room. Multiple audio signals may be generated to emanate from multiple different locations. Likewise, multiple audio signals may be generated to provide different audible signals in different locations in the operating room.
Abstract:
An ultrasonic surgical system includes an ultrasonic transducer configured to receive an electrical drive signal and produce ultrasonic mechanical motion that is output along an ultrasonic horn of the ultrasonic transducer. The ultrasonic horn defines a transverse cam slot. A blade extends from the ultrasonic horn. The blade receives the ultrasonic mechanical motion from the ultrasonic horn for treating tissue. A jaw member is movable relative to the blade between a spaced-apart position and an approximated position for clamping tissue. A cam pin is slidably disposed in the cam slot and is operably coupled to the jaw member. Slidably advancing the cam pin in the cam slot actuates the jaw member between the spaced-apart position and the approximated position.