Abstract:
A process for determining an optimum range of compositions for a nanocomposite thermoelectric material system, within which the material may exhibit generally high figure of merit values, is provided. The process is performed for a nanocomposite thermoelectric material system having a first component and a second component made from nanoparticles. The process includes selecting a plurality of material compositions for a nanocomposite thermoelectric material system to be investigated and calculating a thermal conductivity value and calculating an electrical resistance value for each material composition selected. In addition, at least one Seebeck coefficient is determined for the material compositions selected. Then, a plurality of figure of merit values are calculated using the calculated plurality of thermal conductivity values, the calculated plurality of electrical resistivity values and the determined at least one Seebeck coefficient. After the plurality of figure of merit values are calculated, an optimum compositional range can be determined within which the largest ZT values may be exhibited.
Abstract:
A method and system for processing a Web service request in a distributed computing environment. In one embodiment, the Web service request is processed in a Web service requester. A packet having a header containing an internationalization context of the Web service requester is generated. The packet is then attached to the Web service request. The packet is then sent with the Web service request to the distributed computing environment.
Abstract:
Processes for the liberation of oxygen and hydrogen from water are provided allowing for mass scale production using abundant sources of catalyst materials. A metal oxide based anode is formed by the simple oxidation of metal in air by heating the metal for a specified time period. The resultant anode is then contacted with water and subjected to a voltage from an external source or driven by electromagnetic energy to produce oxygen at the surface of the anode by oxidation of water. These processes provide efficient and stable oxygen or hydrogen production.
Abstract:
An omnidirectional structural color (OSC) having a non-periodic layered structure. The OSC can include a multilayer stack that has an outer surface and at least two layers. The at least two layers can include at least one first index of refraction material layer A1 and at least one second index of refraction material layer B1. The at least A1 and B1 can be alternately stacked on top of each other with each layer having a predefined thickness dA1 and dB1, respectively. The dA1 is not generally equal to the dB1 such that the multilayer stack has a non-periodic layered structure.
Abstract:
The present invention discloses a non-quarter wave multilayer structure having a plurality of alternating low index of refraction material stacks and high index of refraction material stacks. The plurality of alternating stacks can reflect electromagnetic radiation in the ultraviolet region and a narrow band of electromagnetic radiation in the visible region. The non-quarter wave multilayer structure, i.e. nLdL≠nHdH≠λ0/4, can be expressed as [A 0.5 qH pL(qH pL)N 0.5 qH G], where q and p are multipliers to the quarter-wave thicknesses of high and low refractive index material, respectively, H is the quarter-wave thickness of the high refracting index material; L is the quarter-wave thickness of the low refracting index material; N represents the total number of layers between bounding half layers of high index of refraction material (0.5 qH); G represents a substrate and A represents air.
Abstract:
Processes for the liberation of oxygen and hydrogen from water are provided allowing for mass scale production using abundant sources of catalyst materials. A metal oxide based anode is formed by the simple oxidation of metal in air by heating the metal for a specified time period. The resultant anode is then contacted with water and subjected to a voltage from an external source or driven by electromagnetic energy to produce oxygen at the surface of the anode by oxidation of water. These processes provide efficient and stable oxygen or hydrogen production.
Abstract:
In one embodiment, a semi-transparent reflector may include a multilayered photonic structure. The multilayered photonic structure includes a plurality of coating layers of high index dielectric material and a plurality of coating layers of low index dielectric material. The plurality of coating layers of high index dielectric material and the plurality of coating layers of low index dielectric material of the multilayered photonic structure are arranged in an [LH . . . (LH)N . . . L] structure. L is one of the plurality of coating layers of low index dielectric material. H is one of the plurality of coating layers of high index dielectric material. N is a positive integer. The multilayered photonic structure has substantially constant reflectance values for wavelengths of electromagnetic radiation in a visible spectrum over a range of angles of incidence of the electromagnetic radiation.
Abstract:
An omnidirectional structural color (OSC) having a non-periodic layered structure. The OSC can include a multilayer stack that has an outer surface and at least two layers. The at least two layers can include at least one first index of refraction material layer A1 and at least one second index of refraction material layer B1. The at least A1 and B1 can be alternately stacked on top of each other with each layer having a predefined thickness dA1 and dB1, respectively. The dA1 is not generally equal to the dB1 such that the multilayer stack has a non-periodic layered structure.
Abstract:
A paint composition is disclosed, the paint having a binder and an omnidirectional structural color pigment dispersed throughout the binder. The omnidirectional structural color pigment can be made from a plurality of flakes that have a multilayer structure, the pigment and the paint having a reflection band of less than 200 nanometers when viewed from angles between 0 to 45 degrees.
Abstract:
Disclosed is a multilayer structure wherein a first layer of a first material having an outer surface and a refracted index between 2 and 4 extends across an outer surface of a second layer having a refractive index between 1 and 3. The multilayer stack has a reflective band of less than 200 nanometers when viewed from angles between 0° and 80° and can be used to reflect a narrow range of electromagnetic radiation in the ultraviolet, visible and infrared spectrum ranges. In some instances, the reflection band of the multilayer structure is less than 100 nanometers. In addition, the multilayer structure can have a quantity defined as a range to mid-range ratio percentage of less than 2%.