Abstract:
A nozzle includes a nozzle body defining a longitudinal axis. The nozzle body includes an inner air passage fed by a radial swirler and having a converging conical cross-section. A first fuel circuit is radially outboard from the air passage with respect to the longitudinal axis. A second fuel circuit is radially outboard from the first fuel circuit with respect to the longitudinal axis, wherein each of the first fuel circuit and the second fuel circuit extends from a respective fuel circuit inlet to a respective annular fuel circuit outlet. An outer air passage is defined between a fuel circuit outer wall and an outer air passage wall, wherein the outer air passage is a converging non-swirling outer air passage.
Abstract:
A nozzle includes a nozzle body with an inner air passage fed by a first radial swirler and a second radial swirler axially downstream of the first radial swirler. A first fuel circuit is axially between the first and second radial swirlers. A second fuel circuit is axially downstream of the second radial swirler, wherein each of the first fuel circuit and the second fuel circuit extends from a respective fuel circuit inlet to a respective annular fuel circuit outlet. An outer air passage is defined between a fuel circuit outer wall of the second fuel circuit and an outer air passage wall, wherein the outer air passage is a converging non-swirling air passage. An intermediate air passage can be defined between an intermediate wall and the second radial swirler, wherein the intermediate air passage is a converging non-swirling air passage.
Abstract:
A nozzle includes a nozzle body defining a longitudinal axis. The nozzle body includes an air passage having a radial swirler and a converging conical cross-section. A fuel circuit is radially outboard from the air passage with respect to the longitudinal axis. The fuel circuit extends from a fuel circuit inlet to a fuel circuit annular outlet. The fuel circuit includes a plurality of helical passages to mitigate gravitational effects at low fuel flow rates. Each helical passage of the fuel circuit opens tangentially with respect to the fuel circuit annular outlet into an outlet of the air passage.
Abstract:
A method of assembling an airblast injector includes forming a fluid passage on an internal conical surface of a first nozzle component and/or on an outer conical surface of a second nozzle component configured and adapted to mate with the first nozzle component to form at least a portion of a fluid circuit therebetween. The fluid passage is configured and adapted to provide passage for fluid in the fluid circuit between the first and second nozzle components. The method also includes joining the first and second nozzle components together by engaging the second nozzle component within the first nozzle component.
Abstract:
A fuel injector system for a torch igniter includes an injector body centered on an axis, a receiving aperture formed in a cap of the torch igniter, an injector aperture, an air channel, a fuel channel, and a purge passage formed in a housing of the torch igniter and fluidly connected to a cooling air source. The injector body includes an axial wall at a first axial end of the injector body, an outer wall connected to the axial wall and extending along the axis transverse to the first wall, and an inner portion connected to the axial wall and extending along the axis transverse to the axial wall. An outer surface of the inner portion is spaced a distance from an inner surface of the outer wall, forming an insulating space between the outer wall and the inner portion.
Abstract:
An embodiment of a combustor for a gas turbine engine includes a combustor case, a combustor liner disposed within the combustor case, a fuel nozzle at an upstream end of the combustor liner, a torch igniter within the combustor case, and a removable fuel injector. The torch igniter includes a combustion chamber, a cap configured to receive a removable fuel injector and a surface igniter, a tip, an annular igniter wall extending from the cap to the tip and defining a radial extent of the combustion chamber, a structural wall coaxial with and surrounding the igniter wall, and an outlet passage within the tip which fluidly connects the combustion chamber to the combustor. The removable fuel injector extends through a fuel injector opening of the combustor case. The diameter of the fuel injector opening is wider than a fuel injector diameter of the removable fuel injector.
Abstract:
An embodiment of a torch igniter for a combustor of a gas turbine engine comprises a combustion chamber oriented about an axis, a cap defining an axially upstream end of the combustion chamber and oriented about the axis, a tip defining an axially downstream end of the combustion chamber, a structural wall coaxial with and surrounding the igniter wall, an outlet passage defined by the igniter wall within the tip, and a cooling system. The cooling system comprises an air inlet formed within the structural wall, a first flow path disposed between the structural wall and the igniter wall, and an aperture extending through the igniter wall transverse to the flow direction. The aperture directly fluidly connects the first flow path to the combustion chamber.
Abstract:
An embodiment of a torch igniter for a combustor of a gas turbine engine includes a combustion chamber oriented about an axis, a cap defining an axially upstream end of the combustion chamber, a tip defining the axially downstream end of the combustion chamber, an igniter wall extending from the cap to the tip and defining a radial extent of the combustion chamber, a structural wall coaxial with and surrounding the igniter wall, an outlet passage defined by the igniter wall within the tip, a glow plug housing configured to receive a glow plug and allow an innermost end of the glow plug to extend into the combustion chamber, and a cooling system. The cooling system includes an air inlet formed within an exterior of the structural wall, a cooling channel forming a flow path through the structural wall at the glow plug housing, and an air passage.
Abstract:
An embodiment of a combustor for a gas turbine engine includes a combustor case, a combustor liner disposed within the combustor case, a fuel nozzle at an upstream end of the combustor liner, a torch igniter at least partially within the combustor case, and a removable surface igniter. The torch igniter includes a combustion chamber, a cap configured to receive a fuel injector, a tip, an annular igniter wall extending from the cap to the tip and defining a radial extent of the combustion chamber, an aperture, a structural wall coaxial with and surrounding the igniter wall, and an outlet passage within the tip which fluidly connects the combustion chamber to the combustor. The torch igniter is configured to receive the removable surface igniter through the aperture. An internal end of the removable surface igniter extends through the aperture into the combustion chamber of the torch igniter.
Abstract:
A fuel injector system for a torch igniter includes an injector body centered on an axis, a receiving aperture formed in a cap of the torch igniter, an injector aperture, an air channel, a fuel channel, and a purge passage formed in a housing of the torch igniter and fluidly connected to a cooling air source. The injector body includes an axial wall at a first axial end of the injector body, an outer wall connected to the axial wall and extending along the axis transverse to the first wall, and an inner portion connected to the axial wall and extending along the axis transverse to the axial wall. An outer surface of the inner portion is spaced a distance from an inner surface of the outer wall, forming an insulating space between the outer wall and the inner portion.