MULTIFURCATING HEAT EXCHANGER WITH INDEPENDENT BAFFLES

    公开(公告)号:US20240125556A1

    公开(公告)日:2024-04-18

    申请号:US18534941

    申请日:2023-12-11

    CPC classification number: F28D7/1661 F28F9/22 F28F2009/222

    Abstract: A heat exchanger includes a core defining a first passageway for a first fluid flow and a second passageway for a second fluid flow. The core includes an assembly of a plurality of unit cells coupled together. Each unit cell defines a first passageway portion within an interior volume and a second passageway portion at an exterior surface. Each unit cell includes a plurality of first openings into the interior volume and forms the second passageway in volumes between the plurality of unit cells. The assembly is shaped to combine and divide the first fluid in the first passageway portion and combine and divide the second fluid in the second passageway portion during exchange of heat between the first fluid and the second fluid. Each second passageway portion receives the second fluid from three other second passageway portions. The heat exchanger further includes at least one baffle in at least one of the first passageway or the second passageway to route the first fluid flow independently from the second fluid flow.

    Water recovery system including integrated contactor with thermally-enhanced recovery

    公开(公告)号:US11739506B2

    公开(公告)日:2023-08-29

    申请号:US17168845

    申请日:2021-02-05

    Abstract: A water recovery system including a first fluid stream inlet providing for the flow of a first fluid stream, such as a humidified inlet gas, into the system and a second fluid stream inlet providing for the flow of a second fluid stream, such as a gas having a temperature greater than the humidified inlet gas, into the system. At least one contactor is in fluid communication with the first fluid stream inlet and the second fluid stream inlet. The at least one contactor defining therein a first fluidically-isolated, sorbent-integrated, fluid domain for flow of the first fluid stream and water adsorption, a second fluidically-isolated fluid domain for flow of the second fluid stream wherein the second fluidically-isolated fluid domain is in thermal communication with the first fluidically-isolated, sorbent-integrated, fluid domain and a third fluidically-isolated fluid domain for capture of a condensate and recycling of latent heat of condensation back to the first fluidically-isolated, sorbent-integrated, fluid domain.

    WATER RECOVERY SYSTEM INCLUDING INTEGRATED CONTACTOR WITH THERMALLY-ENHANCED RECOVERY

    公开(公告)号:US20220251810A1

    公开(公告)日:2022-08-11

    申请号:US17168845

    申请日:2021-02-05

    Abstract: A water recovery system including a first fluid stream inlet providing for the flow of a first fluid stream, such as a humidified inlet gas, into the system and a second fluid stream inlet providing for the flow of a second fluid stream, such as a gas having a temperature greater than the humidified inlet gas, into the system. At least one contactor is in fluid communication with the first fluid stream inlet and the second fluid stream inlet. The at least one contactor defining therein a first fluidically-isolated, sorbent-integrated, fluid domain for flow of the first fluid stream and water adsorption, a second fluidically-isolated fluid domain for flow of the second fluid stream wherein the second fluidically-isolated fluid domain is in thermal communication with the first fluidically-isolated, sorbent-integrated, fluid domain and a third fluidically-isolated fluid domain for capture of a condensate and recycling of latent heat of condensation back to the first fluidically-isolated, sorbent-integrated, fluid domain.

    Integrated fuel cell and combustion system

    公开(公告)号:US11239470B2

    公开(公告)日:2022-02-01

    申请号:US16222712

    申请日:2018-12-17

    Abstract: A topping cycle fuel cell unit includes a support plate having internal flow passages that extend to combustion outlets, a first electrode layer, an electrolyte layer, and a second electrode layer. The second electrode layer is configured to be coupled to another support plate of another fuel cell unit. The internal flow passages are configured to receive and direct air across the first electrolyte layer or the second electrolyte layer and to receive and direct fuel across another of the first electrolyte layer or the second electrolyte layer such that the first electrode layer, the electrolyte layer, and the second electrode layer create electric current. The internal flow passages are configured to direct at least some of the air and at least some of the fuel to the combustion outlets where the at least some air and the at least some fuel is combusted.

    ADDITIVELY MANUFACTURED STRUCTURES FOR THERMAL AND/OR MECHANICAL SYSTEMS, AND METHODS FOR MANUFACTURING THE STRUCTURES

    公开(公告)号:US20200333084A1

    公开(公告)日:2020-10-22

    申请号:US16923080

    申请日:2020-07-08

    Abstract: A cooling assembly includes walls extending around and defining an enclosed vapor chamber that holds a working fluid. An interior porous wick structure is disposed inside the chamber and lines interior surfaces of the walls. The wick structure includes pores that hold a liquid phase of the working fluid. The cooling assembly also includes an exterior porous wick structure lining exterior surfaces of the walls outside of the vapor chamber. The exterior wick structure includes pores that hold a liquid phase of a cooling fluid outside the vapor chamber. The interior wick structure holds the liquid working fluid until heat from an external heat source vaporizes the working fluid inside the vapor chamber. The exterior wick structure holds the liquid fluid outside the vapor chamber until heat from inside the vapor chamber vaporizes the liquid cooling fluid in the exterior wick structure for transferring heat away from the heat source.

    ADDITIVELY MANUFACTURED STRUCTURES FOR THERMAL AND/OR MECHANICAL SYSTEMS, AND METHODS FOR MANUFACTURING THE STRUCTURES

    公开(公告)号:US20190249929A1

    公开(公告)日:2019-08-15

    申请号:US16034050

    申请日:2018-07-12

    Abstract: A cooling assembly includes walls extending around and defining an enclosed vapor chamber that holds a working fluid. An interior porous wick structure is disposed inside the chamber and lines interior surfaces of the walls. The wick structure includes pores that hold a liquid phase of the working fluid. The cooling assembly also includes an exterior porous wick structure lining exterior surfaces of the walls outside of the vapor chamber. The exterior wick structure includes pores that hold a liquid phase of a cooling fluid outside the vapor chamber. The interior wick structure holds the liquid working fluid until heat from an external heat source vaporizes the working fluid inside the vapor chamber. The exterior wick structure holds the liquid fluid outside the vapor chamber until heat from inside the vapor chamber vaporizes the liquid cooling fluid in the exterior wick structure for transferring heat away from the heat source.

Patent Agency Ranking