摘要:
The instant invention discloses a process for the preparation a polyolefin nanocomposite which comprises melt mixing a mixture of a polyolefin, a filler and a non-ionic surfactant.
摘要:
The instant invention discloses a composition, preferably a nanocomposite material, comprising (a) a synthetic polymer, (b) a filler such as for example a natural or synthetic phyllosilicate or a mixture of such phyllosilicates, preferably in nanoparticles, and (c) a dispersing agent prepared by controlled free radical polymerization (CFRP).
摘要:
The invention relates to a process for increasing the melt flow index of a propylene polymer, the process comprising melt mixing the propylene polymer in the presence of aqueous hydrogen peroxide.
摘要:
The invention relates to a process for increasing the melt flow index of a propylene polymer, the process comprising melt mixing the propylene polymer in the presence of aqueous hydrogen peroxide.
摘要:
The instant invention discloses a process for the preparation a polyolefin nanocomposite which comprises melt mixing a mixture of a polyolefin, a filler and a non-ionic surfactant.
摘要:
The instant invention discloses a composition, preferably a nanocomposite material, comprising (a) a synthetic polymer, (b) a filler selected from a natural or synthetic phyllosilicate or a mixture of such phyllosilicates, preferably in nanoparticles, and (c) a dispersing agent prepared by controlled free radical polymerization (CFRP).
摘要:
A process for modifying a polypropylene (co)polymer wherein said process comprises melt mixing the polypropylene (co)polymer in the presence of an initiator wherein said initiator is selected from the group defined by formula (1), wherein R is selected from the group consisting of optionally substituted C1 to C18 acyl, optionally substituted C1 to C18 alkyl, aroyl defined by formula (2), and compounds of formula (3), wherein U, V, X, Y, Z, U′, V′, X′, Y′ and Z′ are independently selected from the group consisting hydrogen; halogen; C1-C18 alkyl; C1-C18 alkoxy, aryloxy, acyl, acyloxy, aryl, carboxy, alkoxycarbonyl, aryloxycarbonyl, trialkyl silyl, hydroxy, or a moiety of formula (4), and wherein T is alkylene.
摘要:
This invention relates to the synthesis of dithiocarboxylic acid esters by reaction of bis(thioacyl) disulphides, thioacetals or vinylidane bis(thioether) with free-radicals (optionally in the presence of monomers). The invention also relates to processes for the synthesis of polymers utilising these dithioesters as polymerisation regulators (chain transfer agents) or to the use of bis(thioacyl) disulphides to generate dithioester chain transfer agents in situ.
摘要:
A polymer blend comprising a polyester, a polyfunctional acid anhydride wherein said polyfunctional acid anhydride has a functionality as described herein of three or more, and a polyhydric alcohol or precursor thereto wherein said polyhydric alcohol has a functionality of three or more, and wherein said molar ratio of said polyfunctional acid anhydride to the polyhydric alcohol or precursor thereto is in the range of 0.5:1 to (10×C):1, where C is the number of moles of alcohol or equivalent in the polyhydric alcohol or precursor thereto.
摘要:
In one aspect, the invention provides a substantially exfoliated nanocomposite material including starch and hydrophobically modified layered silicate clay. In another aspect, the invention provides packaging made from material including the substantially exfoliated nanocomposite material described above. The nanocomposite material has improved mechanical and rheological properties and reduced sensitivity to moisture in that the rates of moisture update and/or loss are reduced. In another aspect, the invention provides a process for preparing the substantially exfoliated nanocomposite material described above, including a step of mixing the starch in the form of an aqueous gel with the hydrophobic clay in a melt mixing device. In a further aspect, the invention provides a process for preparing the substantially exfoliated nanocomposite material, including the steps of mixing the starch with the hydrophobic clay to form a masterbatch (hereinafter “the masterbatch process”) and mixing the masterbatch with further starch.