Abstract:
The present invention prevents the shaving of an alignment film caused by a columnar spacer in a liquid crystal display device of an IPS method using photo-alignment. A plinth higher than a pixel electrode is formed at a part where a columnar spacer formed over a counter substrate touches a TFT substrate. When an alignment film of a double-layered structure is applied over the pixel electrode and the plinth, the thickness of the alignment film over the plinth reduces by a leveling effect. When photo-alignment is applied in the state, a photodegraded upper alignment film over the plinth disappears and a lower alignment film having a high mechanical strength remains. As a result, it is possible to prevent the shaving of the alignment film.
Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
In a liquid crystal display device, a light shielding film, a color filter, an overcoat film, and an alignment film are formed in this order on a counter substrate. However, the alignment film is not formed in a seal portion. When the alignment film is subjected to photo-alignment with ultraviolet radiation, a portion of the overcoat film not covered with the alignment film is degraded by ultraviolet radiation. In order to prevent moisture penetrating from the degraded overcoat film from reaching the light shielding film to thereby alter the light shielding film and from causing the peeling of the light shielding film, the color filter is disposed below the overcoat film to block the moisture.
Abstract:
A liquid crystal display device has a liquid crystal display panel including pixels each having an active device, a pixel electrode, a common electrode and a liquid crystal layer arranged in a dot matrix array. The liquid crystal display panel has a first substrate, a second substrate, and a liquid crystal layer provided between the first substrate and the second substrate. The first substrate has the active device, the pixel electrode, the common electrode and a first alignment film. The second substrate has a second alignment film. The first alignment film and the second alignment film are respectively a photo alignment film formed by irradiating a photo decomposition type insulating film with light. The second alignment film has a thickness of at least 10 nm and no greater 50 nm and is thinner than the first alignment film.
Abstract:
A method for fabricating a liquid crystal display device including a TFT substrate having an alignment film formed thereon, an opposing substrate, and a liquid crystal layer sandwiched therebetween. The alignment film on the TFT substrate includes a photolytic polymer made from a first precursor including cyclobutane, and a non-photolytic polymer made from a second precursor. The method includes the steps of depositing a mixture material including the first precursor and the second precursor in which the second precursor settles more on an upper surface of the TFT substrate than the first precursor, imidizing the mixture material, and irradiating the mixture material with ultraviolet light for photo-alignment, and after irradiating, heating the mixture material to form the alignment film.
Abstract:
A liquid crystal display device includes a TFT substrate having a first alignment film and an opposing substrate having a second alignment film with liquid crystals sandwiched therebetween. One of the first and second alignment films, comprises a first polyimide produced via polyamide acid ester containing cyclobutane as a precursor and a second polyimide produced via polyamide acid as a precursor. The polyamide acid has a higher polarity than that of the polyamide acid ester. The one of the first and second alignment films is responsive to photo-alignment. A first side of the one of the first and second alignment films is adjacent to the liquid crystals, and a second side thereof is closer to one of the TFT substrate and the counter substrate than the first side. The first side contains more of the first polyimide and less of the second polyimide than the second side.
Abstract:
A display device includes a first substrate, a second substrate and liquid crystals therebetween, the first substrate having a flat portion, an alignment film, and a concavo-convex pedestal formed in a pixel region, wherein the concavo-convex pedestal having at least two convex portions and recessed portions, and the at least two convex portions of the concavo-convex pedestal are at a position lower than a position of the flat portion. A thickness of the alignment film on the convex portions is less than a thickness of the alignment film on the recessed portions, and a second substrate has a columnar spacer which contacts the at least two convex portions of the concavo-convex pedestal.
Abstract:
A display device includes a first substrate having organic and alignment films, a second substrate adhered to the first substrate by a sealant which surrounds a pixel region, a columnar spacer formed on the second substrate defining a distance between the first substrate and the second substrate, and a recessed portion formed in the organic film of the pixel region, the recessed portion facing to the columnar spacer. The recessed portion has a convex portion at a bottom of the recessed portion, and a height of a top of the convex portion from the first substrate is lower than a height of an upper surface of the organic film from the first substrate. A thickness of an alignment film on the convex portion is smaller than a thickness of the bottom of the recessed portion, and a top of the columnar spacer is in contact with the convex portion.
Abstract:
According to one embodiment, a varnish for a photo alignment film includes an imidization promotor and a first polyamic acid-based compound in an organic solvent. The first polyamic acid-based compound is a polyamic acid or a polyamic acid ester. The imidization promotor has skeleton containing no primary amino group and no secondary amino group. The first polyamic acid-based compound has terminal skeletons containing no primary amino group.
Abstract:
The present invention prevents the shaving of an alignment film caused by a columnar spacer in a liquid crystal display device of an IPS method using photo-alignment. A plinth higher than a pixel electrode is formed at a part where a columnar spacer formed over a counter substrate touches a TFT substrate. When an alignment film of a double-layered structure is applied over the pixel electrode and the plinth, the thickness of the alignment film over the plinth reduces by a leveling effect. When photo-alignment is applied in the state, a photodegraded upper alignment film over the plinth disappears and a lower alignment film having a high mechanical strength remains. As a result, it is possible to prevent the shaving of the alignment film.