Abstract:
A liquid crystal display device includes a first substrate, a first alignment film formed over the first substrate, a second substrate, a second alignment film formed over the second substrate, a liquid crystal layer sandwiched between the first alignment film and the second alignment film, and a projecting portion formed over the second substrate. The first film is a photo alignment film, and a thickness “d2” of the second alignment film over the projecting portion and a film thickness “d1” of a portion of the first alignment film facing the projecting portion satisfy formula (2), d2
Abstract:
An alignment film is given a 2-layer structure comprising a photoalignment film that is photoalignable and a low-resistivity alignment film whose resistivity is smaller than that of the photoalignment film. The photoalignment film is formed by a polyimide whose precursor is polyamide acid alkyl ester, the number molecular weight of the photoalignment film is large, and the stability of alignment of the photoalignment film by photoalignment is excellent. The low-resistivity alignment film is formed by a polyimide whose precursor is polyamide acid, the number molecular weight of the low-resistivity alignment film is small, and the resistivity of the low-resistivity alignment film is small. The 2-layer structure alignment film can be maintaining an excellent photoalignment characteristic, so DC afterimages can be controlled.
Abstract:
A liquid crystal display device includes a TFT substrate having a first alignment film and an opposing substrate having a second alignment film with liquid crystals sandwiched therebetween. One of the first and second alignment films, comprises a first polyimide produced via polyamide acid ester containing cyclobutane as a precursor and a second polyimide produced via polyamide acid as a precursor. The polyamide acid has a higher polarity than that of the polyamide acid ester. The one of the first and second alignment films is responsive to photo-alignment. A first side of the one of the first and second alignment films is adjacent to the liquid crystals, and a second side thereof is closer to one of the TFT substrate and the counter substrate than the first side. The first side contains more of the first polyimide and less of the second polyimide than the second side.
Abstract:
A liquid crystal display device includes a TFT substrate and a counter substrate and a liquid crystal layer sandwiched therebetween. A scanning line, a video signal line, a thin film transistor connected to the scanning line and the video signal line, a pixel electrode connected to the thin film transistor, and a counter electrode are formed on the TFT substrate, and a columnar spacer formed on the counter substrate. The pixel and counter electrodes are transparent, and the liquid crystal layer is controlled by an electric field generated between the pixel and counter electrodes. The counter electrode contacts with a metal line having a first part which is extended in parallel with the scanning line and a second part which is extended in parallel with the video signal line, a width of the first part of the metal line being narrower than a width of the scanning line.
Abstract:
A liquid crystal display device includes a first substrate, a first alignment film formed over the first substrate, a second substrate, a second alignment film formed over the second substrate, a liquid crystal layer sandwiched between the first alignment film and the second alignment film, and a projecting portion formed over the second substrate. The first alignment film is a photo alignment film, and a thickness “d2” of the second alignment film over the projecting portion and a film thickness “d1” of a portion of the first alignment film facing the projecting portion satisfy formula (2), d2
Abstract:
According to one embodiment, a liquid crystal display device includes a first substrate, a second substrate, a liquid crystal layer, a first alignment film, and a sealant, wherein the first alignment film is an optical alignment film, the sealant includes an epoxy resin not having an acrylate skeleton and a resin having an acrylate skeleton, a storage elastic modulus of the sealant is greater than or equal to 1.0×107 Pa and less than or equal to 1.5×109 Pa, and at least a part of the sealant is in contact with the first alignment film.
Abstract:
In the step of curing a resin for bonding a TFT substrate and a counter substrate each having an alignment film that has been optically aligned by using UV-light, damage to the alignment film due to the UV-light can be prevented without using a light shielding mask. A UV-light absorption layer is formed between each black matrix on the counter substrate. The TFT and counter substrates are sealed at their periphery by a resin that is cured by UV-light radiated from the counter substrate side. Since the absorption layer has a high absorbability to UV-light at a wavelength of 300 nm or less that degrades the alignment film, damage to the alignment film due to the UV-light for curing the resin can be prevented. Thus, provision of a light shielding mask for shielding the UV-light for the display region can be saved.
Abstract:
An alignment film is given a 2-layer structure comprising a photoalignment film that is photoalignable and a low-resistivity alignment film whose resistivity is smaller than that of the photoalignment film. The photoalignment film is formed by a polyimide whose precursor is polyamide acid alkyl ester, the number molecular weight of the photoalignment film is large, and the stability of alignment of the photoalignment film by photoalignment is excellent. The low-resistivity alignment film is formed by a polyimide whose precursor is polyamide acid, the number molecular weight of the low-resistivity alignment film is small, and the resistivity of the low-resistivity alignment film is small. The 2-layer structure alignment film can be maintaining an excellent photoalignment characteristic, so DC afterimages can be controlled.
Abstract:
A liquid crystal display device includes a TFT substrate having a first alignment film and an opposing substrate having a second alignment film with liquid crystals sandwiched therebetween. One of the first and second alignment films, comprises a first polyimide produced via polyamide acid ester containing cyclobutane as a precursor and a second polyimide produced via polyamide acid as a precursor. The polyamide acid has a higher polarity than that of the polyamide acid ester. The one of the first and second alignment films is responsive to photo-alignment. A first side of the one of the first and second alignment films is adjacent to the liquid crystals, and a second side thereof is closer to one of the TFT substrate and the counter substrate than the first side. The first side contains more of the first polyimide and less of the second polyimide than the second side.
Abstract:
A liquid crystal display device has a liquid crystal display panel including pixels each having an active device, a pixel electrode, a common electrode and a liquid crystal layer arranged in a dot matrix array. The liquid crystal display panel has a first substrate, a second substrate, and a liquid crystal layer provided between the first substrate and the second substrate. The first substrate has the active device, the pixel electrode, the common electrode and a first alignment film. The second substrate has a second alignment film. The first alignment film and the second alignment film are respectively a photo alignment film formed by irradiating a photo decomposition type insulating film with light. The second alignment film has a thickness of at least 10 nm and no greater 50 nm and is thinner than the first alignment film.