Abstract:
One embodiment of the present specification provides a method for transmitting network support information in a serving cell in order to remove interference of a terminal. The method for transmitting the network support information comprises the steps of: enabling the serving cell to select a first terminal and a second terminal to which a multi-user multiple input multiple output (MU-MIMO) is applied; enabling the serving cell to select different codewords for a downlink data channel to the selected first and second terminals; enabling the serving cell to determine whether the first terminal can remove the interference; and transmitting, to the first terminal, the network support information for supporting the interference removal using the downlink data channel to the second terminal if the first terminal can remove the interference.
Abstract:
One embodiment of the present specification provides an interference-removed reception method. The interference-removed reception method may comprise the steps of: encoding, in a binary in a physical channel, stored information for an attacker cell which causes interference; performing a comparison between the encoded binary and a new binary in the physical channel received from the attacker cell; and if the binaries match, removing interference caused by the new binary in the physical channel received from the attacker cell by using the encoded binary, and thereby receiving a signal from a serving cell.
Abstract:
There is provided a UE in a wireless communication system, the UE comprising: at least one transceiver, at least one processor; and at least one computer memory storing instructions that, based on being executed by the at least one processor, perform operations comprising: receiving a capability enquiry message from a serving cell; transmitting a capability information to the serving cell, based on that the capability enquiry message is received; and transmitting an uplink signal based on first CC within a NR TDD operating band; and receiving a downlink signal based on second CC within NR TDD operating band.
Abstract:
There is provided a method for performing communication. The method performed by a UE and comprising: receiving measurement configuration information from a base station; and performing measurement for the plurality of cells based on the each of the multiple MG patterns, which is configured based on the MG information.
Abstract:
One disclosure of the present specification provides a method by which a UE performs sidelink communication. The method may comprise the steps of: performing sidelink communication on the basis of a first RAT; switching a RAT for the sidelink communication from the first RAT to a second RAT; performing the sidelink communication on the basis of the second RAT; and communicating with a base station on the basis of NR.
Abstract:
One disclosure of the present specification provides a method for performing communication by a user equipment (UE). The method comprises the steps of: receiving a downlink signal from a base station, wherein the downlink signal is received via n263 operation band in FR2-2 (Frequency Range2-2), wherein the UE is a power class 2 UE, wherein the UE satisfies REFSENS (Reference Sensitivity) on a first channel bandwidth, wherein, based on the first channel bandwidth being 100 MHz, the REFSENS is −86.3 dBm, wherein, based on the first channel bandwidth being 400 MHz, the REFSENS is −80.3 dBm, wherein, based on the first channel bandwidth being 800 MHz, the REFSENS is −77.3 dBm, wherein, based on the first channel bandwidth being 1600 MHz, the REFSENS is −74.3 dBm, wherein, based on the first channel bandwidth being 2000 MHz, the REFSENS is −73.3 dBm.
Abstract:
A disclosure of this specification provides a device configured to operate in a wireless system, the device comprising: dual transceiver; a processor operably connectable to the dual transceiver, wherein the processor is configured to: set a configured maximum output power based on a maximum power reduction (MPR) value; determine an uplink transmission power based on the configured maximum output power; and control the dual transceiver to transmit a uplink signal with the uplink transmission power, wherein the device supports power class 1.5, wherein the MPR value is for Inner RB allocations, wherein the MPR value is preconfigured based on modulation type for the uplink signal.
Abstract:
Provided is an electronic device provided with an antenna for 5G communication according to the present invention. The electronic device includes an array antenna which is implemented as a multi-layer substrate inside the electronic device and includes a plurality of antenna elements. Each of the antenna elements of the array antenna comprises: a patch antenna disposed on a specific layer of the multi-layer substrate and configured to radiate a signal applied from a feeder line; a first electronic band gap (EBG) element disposed parallel to the patch antenna on the left or right side of the patch antenna; and a second electronic band gap (EBG) element disposed parallel to the patch antenna on the upper or lower side of the patch antenna.
Abstract:
Provided in one embodiment of the present specification is a method for switching a bandwidth part (BWP) for sidelink communication. The method can comprise the steps of: receiving information about a bandwidth part (BWP) switching timing from a base station; and switching a BWP on the basis of the information about the BWP switching timing. The information about the BWP switching timing can include information about the point of time at which the BWP switching should be started after the information has been received. The information about the BWP switching timing can be received through downlink control information (DCI) or a radio resource control (RRC) signal.
Abstract:
A disclosure of the present specification provides a method for performing sidelink communication by a UE. The method may comprise the steps of: performing sidelink communication on the basis of a first RAT; switching an RAT for the sidelink communication from the first RAT to a second RAT; and performing the sidelink communication on the basis of the second RAT.