摘要:
Allocation of a wireless communications system channel resource is managed by utilizing traffic segment allocation. This is realized by partitioning the channel resource into an assignment channel and a traffic channel in a fixed manner. The assignment channel includes assignment segments and the traffic channel includes traffic segments. The traffic segment is the basic traffic channel resource unit used to transport traffic data and has a prescribed finite time interval and bandwidth. Each traffic segment is associated with a so-called assignment segment in a prescribed manner. One or more traffic segments may be associated with a particular assignment segment. A base station broadcasts via an assignment segment which wireless terminal is to use a particular traffic segment. This is realized by transmitting a simply identifier for the particular wireless terminal assigned to the particular traffic segment in the assignment segment. Then, each active wireless terminal monitors all of the received assignment segments to detect any traffic channel assignments. Once a wireless terminal detects its identifier in an assignment segment, it proceeds to receive/transmit the traffic data in the traffic segment associated with the assignment segment including the detected identifier.
摘要:
In a wireless multiple access communications system a channel resource is managed by utilizing traffic segments and acknowledgment segments to determine if data traffic needs to be retransmitted. traffic data and has a prescribed finite time interval and bandwidth. Each traffic segment in a downlink or an uplink is associated with an acknowledgment segment in the uplink or downlink, respectively, in a fixed one-to-one manner. A base station uses the acknowledgment segments in the downlink to acknowledge the associated traffic segments successfully received in the uplink. A wireless terminal that receives a downlink traffic segment uses the associated acknowledgment segment in the uplink to acknowledge the traffic segment. The base station monitors all the acknowledgment segments to determine whether any of the traffic segments needs to be retransmitted.
摘要:
In a wireless communications system, multicast messages are transported to groups of wireless terminals by employing a common control channel to transmit a multicast paging message indicating that multicast traffic data is to be transmitted to a particular group of wireless terminals. In an embodiment of the invention, the essential information transmitted in the common control channel is the identifier of the group of wireless terminals intended to receive the multicast traffic data and the location of a traffic channel on which the multicast traffic is to be transported in a channel resource which may include a representation of bandwidth and time interval. In accordance with an aspect of the invention, the common control channel is associated with a traffic channel in a prescribed fixed manner. Further, the traffic channel used for the purpose of multicast can be the same traffic channel used for the normal point-to-point transmission of traffic data.
摘要:
Techniques for paging terminals in a wireless (e.g., OFDMA) communication system to achieve both fast paging response and low power consumption for the terminals are described. A terminal receives paging indicator from a base station. If the paging indicator indicates that the terminal is potentially being paged, then the terminal receives at least one paging message from a paging channel. The terminal determines whether any one of the at least one paging message is for the terminal e.g., based on identification information included in each paging message. If a paging message indicates that the terminal is paged, then the terminal sends an acknowledgement for the paging message. The base station may estimate the timing of the terminal based on the acknowledgement and may send timing adjustment to the terminal. The terminal may adjust its timing based on the timing adjustment and may be able to quickly access the system with no contention.
摘要:
Latency in receiving and detecting paging messages at a wireless terminal is reduced by employing a unique “super” paging time slot format. A paging super time slot includes a plurality of prescribed time slots. Each wireless terminal is associated with cyclically recurring super time slots. A super slot is associated with one or more wireless terminals. A base station always selects the first available time slot in a super time slot to transmit a paging message to a wireless terminal that is associated with the super time slot. Each wireless terminal monitors every time slot in the associated super time slot until either detecting reception of its associated paging message or detecting an empty time slot. In another embodiment of the invention, a unique partially overlapping super time slot format is employed in which a super time slot has at least one time slot common to its adjacent super time slots. This allows wireless terminals associated with adjacent super time slots to share the common at least one time slot. In turn, this results in balanced traffic loads, smoothed traffic fluctuation and reduced congestion.
摘要:
In many cellular systems, reusing spectrum bandwidth, creates problems in boundary regions between the cells and sectors where the signal strength received from adjacent base stations or adjacent sector transmissions of a single base station may be nearly equivalent. The invention creates a new type of diversity, referred to as multiple carrier diversity by utilizing multiple carriers, assigning different power levels to each carrier frequency at each base station, and/or offsetting sector antennas. The cell and/or sector coverage areas can be set so as to minimize or eliminate overlap between cell and/or sector boundary regions of different carrier frequencies. Mobile nodes traveling throughout the system can exploit multiple carrier diversity by detecting carriers and selecting to use a non-boundary carrier based on other system criteria in order to improve performance. Boundary carriers may, but need not be, identified and excluded from consideration for use by a wireless terminal.
摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.
摘要:
A method for reducing the peak-to-average ratio in an OFDM communication signal is provided. The method includes defining a constellation having a plurality of symbols, defining a symbol duration for the OFDM communication signal, and defining a plurality of time instants in the symbol duration. A plurality of tones are allocated to a particular communication device, and a discrete signal is constructed in the time domain by mapping symbols from the constellation to the time instants. A continuous signal is generated by applying an interpolation function to the discrete signal such that the continuous signal only includes sinusoids having frequencies which are equal to the allocated tones.