摘要:
An optical pickup device includes an illuminating optical system for focusing light beams, split in a main beam and at least one side beam, onto a track on an information storage surface of an optical storage medium to form optical spots thereon. The device also includes a light detecting optical system for introducing return light reflected back from the information storage surface and a polarizing optical element. The polarizing optical element has regions split at the center of an optical path by a parting line extending at least either in a direction of extension of the track or in a direction perpendicular to the direction of extension. The polarizing optical element also splits the main beam return light at least in two for each of the regions on a plane perpendicular to the optical path of the return light of the reflected main beam in the light detecting optical system. The polarizing optical element is disposed where the return light of the main and side beams is spatially separated. The optical pickup device further includes an optical detector disposed in contact with the polarizing optical element. The optical detector has a plurality of main-beam light-receiving elements for receiving the separated main beam return light and a plurality of side-beam light-receiving elements for receiving the separated side beam return light.
摘要:
An optical pickup includes a laser light source emitting a laser beam, an objective lens collecting the laser beam, and a wavefront-aberration correcting device provided on an optical axis of the laser beam and adapted to change a refractive index by controlling voltage. During reproduction of an optical disk, the wavefront-aberration correcting device corrects a wavefront aberration occurring due to a tilting of the optical disk, or corrects both the wavefront aberration occurring due to the tilting of the optical disk and a wavefront aberration due to the thickness of a substrate of the optical disk.
摘要:
An objective lens that allows spherical aberration to be suppressed during the reproduction of a CD without sacrificing reproduction characteristics of a DVD, has a first numerical aperture comprising a refracting surface that is in rotatory symmetry about an optical axis. A part of the refracting surface is displaced along the optical axis as an annular concave (or convex) portion centered on the optical axis. The annular concave (or convex) portion has a certain inner diameter r.sub.1 and a certain outer diameter r.sub.2 that reduce RMS aberration V to a value close to a minimum value. The annular portion has a certain depth (or height).
摘要:
An optical recording medium drive device including: a combining prism for combining a recording first laser beam emitted from a first light source with a recording second laser beam emitted from the first light source so as to coaxially guide them; an objective lens for condensing the first and second laser beams from the combining prism toward an optical recording medium; a first photodetecting means for detecting reflected light of the first laser beam from a recording layer; a second photodetecting means for detecting reflected light of the second laser beam from a guide layer; a magnification conversion element disposed on an optical path of the second laser beam between a second light source and the combining prism for diffusing or converging the second laser beam incident upon the objective lens; a first focus error generating means for generating a first focus error signal indicating an error between a condensed spot position of the first laser beam and the recording layer based on an output signal of the first photodetecting means; a second focus error generating means for generating a second focus error signal indicating an error between a condensed spot position of the second laser beam and the guide layer based on an output signal of the second photodetecting means; a first focus control means for controlling the objective lens in an optical axis direction thereof in accordance with the first focus error signal; and a second focus control means for controlling a magnitude of the diffusion or convergence of the second laser beam by the magnification conversion element in accordance with the second focus error signal.
摘要:
Disclosed herein is a recording medium on or from which the recording or reproduction of data is stably performed. On the recording medium, data are recorded three-dimensionally by the irradiation of a recording laser beam. The recording medium includes a reflection control layer including a plurality of reflection layers stacked in a film thickness direction, each reflection layer having a connection terminal, each reflection layer exhibiting reflectivity and transmissivity changeable in response to an electrical signal supplied to the connection terminal and a recording layer disposed at a beam incidence side of the reflection control layer.
摘要:
A fabrication method of a multilayer optical recording medium having a plurality of recording layers, comprises a step of preparing an optical recording medium having at least one record area; a write-position mark generating step of recording write-position marks in the record area beforehand; a step of preparing an optical system including a common objective lens to focus a data recording beam and a position mark recording beam on different positions in a thickness direction of the record area; a first data writing step of writing data between the write-position marks with following the write-position marks by the data recording beam; a position mark recording step of, in parallel with the first data writing step, recording new write-position marks in the record area by the position mark recording beam; and a second data writing step of writing data between the new write-position marks with following the new write-position marks by the data recording beam.
摘要:
An optical pickup apparatus reads an information signal recorded on a recording surface of an optical disk along a track by projecting a light beam. Said optical pickup apparatus has: an objective lens for converging said light beam onto said recording surface; an objective lens moving device for moving said objective lens in a radial direction of said optical disk; and a divisional photosensing device for receiving return light reflected by said optical disk, in a plurality of divided regions. Said divisional photosensing device has: a first divisional photosensing device for dividing a first region including both edge portions in said radial direction of said return light, in two divided areas in said radial direction; a second divisional photosensing device for receiving a second region including both edge portions in a direction which perpendicularly crosses said radial direction of said return light, in two divided areas in said radial direction; and a third divisional photosensing device for receiving a third region including an almost center portion of said return light, in two divided areas in said radial direction.
摘要:
A recording method which optically records two-dimensional data including a positioning mark and data area in a recording medium. In this method, the state of the positioning mark is changed from a first state to at least one second state different from the first state every given number of recording times of such two-dimensional data.
摘要:
A pickup device includes an irradiation optical system containing an objective lens for forming a spot by converging a light beam onto a track of a recording surface of an optical recording medium having a plurality of laminated recording layers; and a detection optical system containing a photodetector for receiving, through the objective lens, return light which was reflected and returned from the spot to perform a photoelectric conversion, in which a position of the objective lens is controlled in response to an electric signal arithmetically operated from an output of the photodetector. The photodetector includes a plurality of photosensing element groups which are arranged away from each other on a plane to which an optical axis of the return light penetrates perpendicularly and each of the groups is composed of a plurality of photosensing elements. The pickup device further comprises a dividing element disposed on another plane to which the optical axis of the return light penetrates perpendicularly. The dividing element has: at least two division regions which are formed so as to be line-symmetrical with respect to a track directional line which intersects with the optical axis of the return light and extends in parallel with the track; at least two division regions which are formed so as to be line-symmetrical with respect to a track vertical line which intersects with the optical axis of the return light and extends in the direction perpendicular to the track; and a center division region which includes the optical axis of the return light and is formed so as to be point-symmetrical with respect to the optical axis of the return light. The dividing element divides the return light into a plurality of partial light beams at respective division regions to deflecting the partial light beams from the division regions other than the center division region to the photosensing element groups.
摘要:
A pickup device includes an irradiation optical system including an object lens for focusing light flux on a track of a recording surface of an optical recording media having a plurality of recording layers stacked while a spacer layer is interposed between the recording layers to form a spot and a detection optical system including an photo detector having a plurality of light receiving parts for receiving returning light reflected from the spot through the object lens to perform photoelectric conversion. The pickup device controls a position of the object leans according to an electrical signal calculated from outputs of the light receiving parts. The pickup device further includes an astigmatic device for providing astigmatism to the returning light directed to the light receiving parts and a division device, having divisional regions divided by a division line extending in an astigmatic direction about an optical axis of the returning light, for dividing the returning light having the astigmatism into a plurality of partial light fluxes divided for the respective divisional regions along the optical axis of returning light. The neighboring divisional regions provide the partial light fluxes with an optical action so that interference between the corresponding partial light fluxes does not occur on the light receiving parts.