Abstract:
In some examples, a processor determines a patient state based on activity of a bioelectrical brain signal of a patient in one or more frequency sub-bands of a frequency band of interest. For example, a processor may determine a patient state based on the power level of a bioelectrical brain signal of the patient in one or more frequency sub-bands of a frequency band, or based on a spectral pattern of a bioelectrical brain signal in a frequency band, such as a shift in a power distribution between sub-bands, a change in the peak frequency within one or more sub-bands, a pattern of the power distribution over one or more frequency sub-bands, or a width or a variability of one or more sub-bands exhibiting a relatively high or low level of activity.
Abstract:
In some examples, a technique for delivering electrical stimulation therapy to a patient includes determining, by processing circuitry, one or more cycle settings associated with delivery of the electrical stimulation therapy, determining, by the processing circuitry, a cycle time period associated with each cycle setting, and delivering, by a medical device, electrical stimulation therapy based on the determined cycle settings and the determined cycle time periods. Each cycle setting may define an on-cycle, during which electrical stimulation is delivered, and an off-cycle, during which electrical stimulation is not delivered. The technique further may include delivering electrical stimulation to the patient to provide one or more reminders to the patient, such as a reminder to void or a reminder of the existence of electrical stimulation.
Abstract:
The disclosure describes devices, systems, and techniques for identifying and treating bladder dysfunction. In one example, a method includes identifying one or more focal points at respective locations of bladder tissue of a bladder of a patient, the one or more focal points initiating coordinated contractions of a detrusor muscle. The method may also, or alternatively, include ablating, for each of the one or more focal points, a respective portion of the bladder tissue at the respective location of the focal point. Ablation of these targeted portions of the bladder tissue may reduce the coordinated contractions of the detrusor muscle and alleviate overactive bladder symptoms.
Abstract:
This disclosure describes methods, systems, and devices configured to determine a timing of a future bladder related event of a patient. For example, a system includes processing circuitry configured to identify a timing of a plurality of bladder related events of a patient, determine, based on the timing of the plurality of bladder related events of the patient, a probability to experience a bladder related event function for the patient, the probability to experience a bladder related event function indicating a probability that the patient will experience a bladder related event at an elapsed time after a previous bladder related event, predict, based on the probability to experience a bladder related event function, a timing of a future bladder related event, and control delivery of a therapy to the patient based on the predicted timing of the future bladder related event.
Abstract:
In some examples, electrical stimulation is delivered to a patient such that selective termination of the stimulation causes a therapeutic effect in the patient after termination of the electrical stimulation to the patient. The electrical stimulation may be insufficient to produce a desired therapeutic effect in the patient during stimulation, but sufficient to induce a post-stimulation desired therapeutic effect following termination of the stimulation. In some examples, the electrical stimulation may be sub-threshold electrical stimulation. In some examples, the desired therapeutic effect may alleviate bladder dysfunction, bowel dysfunction, or other disorders. The stimulation may be selectively terminated in response to one or more therapy trigger events to induce the post-stimulation therapeutic effect.
Abstract:
This disclosure relates to devices, systems, and methods for autotitrating stimulation parameters. In one example, a method includes controlling an implantable medical device to deliver electrical stimulation to a patient according to a plurality of electrical stimulation parameter sets, each electrical stimulation parameter set of the plurality of electrical stimulation parameter sets defining a respective electrical stimulation signal deliverable to the patient, obtaining, by one or more processors and for each electrical stimulation parameter set of the plurality of electrical stimulation parameter sets, a respective signal representative of an electrical response sensed from the patient in response to the electrical stimulation delivered to the patient according to the respective electrical stimulation parameter set, and determining, by the one or more processors and based on the obtained respective signals, a primary electrical stimulation parameter set that defines electrical stimulation therapy deliverable to the patient by the implantable medical device.
Abstract:
Techniques, devices, and systems may include screening effective therapies using cortical evoked potentials. In one example, a system may be configured to receive a first sensed cortical evoked potential of a patient that occurred in response to an induced sensation at an anatomical region different from a brain region of the patient and receive a second sensed cortical evoked potential that occurred in response to electrical stimulation delivered to one or more nerves associated with the anatomical region. The electrical stimulation may be at least partially defined by a set of therapy parameter values. The system may also compare a first value of a characteristic of the first sensed cortical evoked potential to a second value of the characteristic of the second sensed cortical evoked potential and determine, based on the comparison, efficacy of a therapy configured to treat a condition associated with the anatomical region.
Abstract:
In one example, a method including generating electrical stimulation therapy with a frequency of approximately 500 hertz or greater, and controlling delivery of the electrical stimulation therapy to a patient via a medical device between at least one of contractions of a bladder or contractions of a bowel of a patient, wherein the electrical stimulation therapy comprises electrical stimulation therapy configured to inhibit contraction of the bladder when the electrical stimulation is delivered between the contractions of the bladder, wherein the electrical stimulation therapy comprises electrical stimulation therapy configured to inhibit contraction of the bowel when the electrical stimulation is delivered between the contractions of the bowel, and wherein at least one of the generating and controlling is performed via one or more processors.
Abstract:
Electrical stimulation therapy may be delivered to a patient to selectively and independently address different conditions of a pelvic floor disorder of the patient. The conditions of a pelvic floor disorder may include, for example, a lower urinary tract dysfunction (e.g., urinary or fecal incontinence) and sexual dysfunction (e.g., an impaired sexual reflex response to a sexual stimulus). In some examples, a system is configured to selectively deliver a first electrical stimulation therapy that is configured to elicit an inhibitory physiological response from the patient related to voiding, a second electrical stimulation therapy that is configured to improve a sexual reflex response of the patient to a sexual stimulus, and a third electrical stimulation therapy that is configured to both elicit the inhibitory physiological response from the patient related to voiding and increase a sexual response of the patient to a sexual stimulus.
Abstract:
In some examples, a medical device delivers electrical stimulation to the external portion of the globus pallidus of a brain of a patient in order to treat a sleep impairment of the patient. In some examples, the electrical stimulation may be delivered via one or more electrodes implanted in the GPe of the brain. In some examples, an electrical stimulation device is configured to deliver electrical stimulation therapy to the GPe based on detection of a sleep state of a patient. The sleep state may include, for example, a state in which the patient is awake and intending on sleeping, is awake and attempting to sleep or has initiated sleep. In addition, in some examples, an electrical stimulation device is configured to deliver electrical stimulation therapy to the GPe based on detection of an awake state of a patient.