Abstract:
Active noise cancellation is employed to address unwanted acoustical noise generated by various equipment associated with an ophthalmic surgical system. Active noise cancellation may be used within a chassis of the ophthalmic surgical system, within an air compressor used with the ophthalmic surgical system, and within a reciprocating surgical probe used with the ophthalmic surgical system.
Abstract:
A contact lens for use with a surgical microscope may be equipped with an anti-fogging device to prevent obscuring the view of a surgeon due to condensation during ophthalmic surgery. The anti-fogging device may deliver thermal energy to a surface of the contact lens to heat the contact lens above an ambient dew point. The thermal energy may be delivered by an air duct with a fan nozzle, a fluid duct in thermodynamic contact with the contact lens circulating a heat transfer fluid, or generated with electrical energy to an electrical heating element disposed on the surface of the contact lens. The thermal or electrical energy may be delivered via a handle for supporting the contact lens during surgery.
Abstract:
A contact lens is usable during ophthalmic surgery, such as vitreoretinal surgery, and includes a diffractive structure that extends depth of focus along an optical axis of the contact lens.
Abstract:
Binocular en face OCT imaging during ophthalmic surgery may be performed with an OCT scanning controller that interfaces to an OCT scanner used with a surgical microscope. The OCT scanner may generate left and right sample beams, and receive left and right measurement beams, respectively, to generate left and right scan data. The OCT scanning controller may process the left and right scan data to generate left and right en face images for respective viewing from binoculars in the surgical microscope to obtain an intraoperative stereoscopic en face view of interior portions of the eye.
Abstract:
The present invention provides an autofocus surgical microscope system that comprises a surgical microscope, a time-of-flight module, a focus controller, and a focus mechanism. The focus controller is coupled to the time-of-flight module. The focus mechanism is coupled to the focus controller and the surgical microscope. The time-of-flight module determines a distance to an eye structure, and the focus controller controls the focus mechanism based on the determined distance to focus the surgical microscope on the eye structure
Abstract:
A method and device for actively stabilizing a patient during ocular surgery includes one or more sensors attached to a patient to measure motion, a head stabilization member, and one or more actuators that actively offset the motion of a patient.