Abstract:
Systems and methods for imaging tissue are described. Particularly, systems and methods of imaging an inner limiting membrane, epi-retinal membrane, or posterior vitreous cortex of a patient's eye are disclosed. Imaging an inner limiting membrane, epi-retinal membrane, or posterior vitreous cortex may include applying a stain to the inner limiting membrane, epi-retinal membrane, or posterior vitreous cortex of the patient's eye, causing the stain to produce fluorescent light having a wavelength within a near-infrared range, capturing the fluorescent light, and producing an Optical Coherence Tomography (OCT) image of the inner limiting membrane, epi-retinal membrane, or posterior vitreous cortex with an OCT imaging system that is configured to detect light within the near-infrared range.
Abstract:
Curvature of field transformation of OCT images during ophthalmic surgery may be performed with an OCT scanning controller that interfaces to an OCT scanner used with a surgical microscope. Real-time OCT images may be acquired by the OCT scanner, while an anamorphic transformation is applied to the OCT images to match the curvature of field for optical images viewed using the surgical microscope. The transformed OCT images may be displayed during surgery.
Abstract:
Systems, methods, and computer-readable media for automatically controlling a lens to cornea standoff. Automatic lens to cornea standoff control can include an ophthalmic microscope with a lens arrangement configured for viewing images of an eye, a front lens assembly with a high diopter lens for resolving an image of a posterior portion of the eye, and a sensor to monitor a distance between the high diopter lens and a surface of the eye. Automatic lens to cornea standoff control can also include a control system for receiving distance information and an actuator for the front lens assembly back to the threshold standoff distance, past the threshold standoff distance, etc.
Abstract:
Vitreoretinal instruments and methods related thereto are disclosed herein. The disclosure describes various example vitreoretinal instruments having various aspirating port configurations. A vitreoretinal instrument may include a handle and a cannula coupled to the handle. The cannula may include a straight portion and a curved portion. The curved portion may be configurable between a straight configuration and a curved configuration. The curved configuration may include a first curved portion having a curvature defined by a first radius. The curved configuration may include a second curved portion having a curvature defined by a second radius different from the first radius. The curved portion may further include one or more ports formed in the curved portion.
Abstract:
Systems, apparatuses, and methods of and for an ophthalmic visualization system are disclosed. An example ophthalmic visualization system may include a first lens positioned relative to a surgical microscope in a manner facilitating viewing of a central region of a retina through the surgical microscope during a surgical procedure. The first lens may be positionable in an optical path between an eye and the surgical microscope during the surgical procedure. The example ophthalmic visualization system may also include a second lens selectively positionable relative to the surgical microscope and the first lens in a manner facilitating viewing of a peripheral region of the retina of the eye during the surgical procedure. The second lens may be selectively positionable in the optical path such that the peripheral region is selectively viewable without changing the position of the first lens during the surgical procedure.
Abstract:
A method of imaging in an ophthalmic surgical procedure can include determining an excitation wavelength of light associated with a vital stain; transmitting light having the excitation wavelength; determining an emission wavelength of light associated with the vital stain; filtering light using a first optical element to allow transmission of light having the emission wavelength and to block light having the excitation wavelength. An ophthalmic surgical imaging system can include a light source, one or more optical elements, an image sensor, a computing device, and/or a display device to visualize target biological tissue stained with a fluorescent vital stain. A method of imaging in an ophthalmic surgical procedure can include determining a wavelength of light that increases the visual contrast of a vital stain; transmitting light having the determined wavelength; and receiving a reflection of the transmitted light such that target biological tissue stained by the vital stain is accentuated.
Abstract:
A method and system provide a surgical hand piece including an aspiration line, a tip and a sensor. The tip is coupled with the aspiration line. The sensor is in the aspiration line. The sensor measures a change in at least one of flow through the aspiration line, pressure in the aspiration line and motion of an additional portion of the hand piece within the aspiration line.
Abstract:
Various membrane delamination devices for removing proliferative membranes from underling tissues are disclosed herein. In some implementations, the delamination device may include a first shearing part and a second shearing part. One of the first shearing part and the second shearing part may be moveable relative to the other of the first shearing part and the second shearing part. One or more of the shearing parts may include a plurality of teeth formed at a leading edge thereof. A shearing action produced by operation of the shearing parts may be used to sever fibers joining proliferative membranes from an underlying tissue.
Abstract:
Systems, apparatuses, and methods of and for an ophthalmic surgical system are disclosed. An ophthalmic surgical system may include a vitrectomy probe having a housing sized and shaped for grasping by a user. The vitrectomy probe may also include a cutter extending from the housing and being sized to penetrate and treat a patient eye. The cutter may include an outer cutting tube coupled to the housing. The outer cutting tube may have an outer port formed therein that is sized and shaped to receive tissue. The cutter may include a rotatable inner cutting member disposed within the outer cutting tube. The inner cutting member may include a first cutting surface that rotates across the outer port to cut the tissue when the inner cutting member is rotated. The vitrectomy probe may include a pneumatic vane actuator positioned within the housing and configured to rotate the inner cutting member.
Abstract:
A surgical probe system comprising a surgical probe having an instrument tip, and at least one motion sensor located within the surgical probe that measures movement and orientation data. The system further includes a processor that is configured to determine movement and orientation of the instrument tip based on the movement and orientation data, and adjust at least one surgical parameter of the surgical probe based on the movement and orientation of the instrument tip to affect a predetermined surgical outcome.