Abstract:
Provided is a display device including: a display panel, a timing controller, a gate driver, and a data driver. The display panel includes a display area configured to display an image and a non-display area adjacent to one side of the display area. The display area includes oblique lines, intersectional lines crossing and isolated from at least a part of the oblique lines, and pixels. Pixels coupled to the oblique lines or the intersectional lines and arranged along a line in one direction are defined into pixel rows. The display area further includes a plurality of areas divided by the pixel rows being successive. The number of pixels constituting one of adjacent ones of the pixel rows in at least one of the plurality of areas is different from the number of pixels constituting another thereof.
Abstract:
An image processor, a display device including the same, and a method for driving display panel using the same are disclosed. In one aspect, the display device includes an image shifter configured to shift a data signal by at least one pixel based at least in part on a shift start signal and output the shifted data signal and a shift direction signal. The display device also includes an image buffer configured to output current data and previous data based at least in part on the shifted data signal and the shift direction signal. The display device also includes an image mixer configured to mix the current data and the previous data over M frames starting at a start frame when the shift start signal is received and output image data, M being a natural number.
Abstract:
A method of driving a display panel includes detecting a position of a viewer to output a viewer position detection signal, determining whether the position of the viewer is in a first area or in a second area based on the viewer position detection signal to output a viewer position signal, and driving a unit pixel of the display panel using a plurality of gamma values according to the viewer position signal. The first area is less than a reference distance, and the second area is not less than the reference distance. Thus, side visibility of a display apparatus may be improved.
Abstract:
A display device including a display panel which includes pixels connected to gate lines and data lines; and an image display control unit controlling an input image signal to be converted into a data signal and, thereby, display an image on the display panel. The image display control unit outputs the data signal so that a position of an image being displayed on the display panel is changed when the image signal is the same for a preselected time period and sets a next position change time period of the image according to a distance between an original position of the image and a changed position of the image.
Abstract:
A display device and a driving method thereof are disclosed. In one aspect, the display device includes: a memory which receives an input image data at a first frame frequency and a frame rate controlling unit which converts the input image data to an output image data output at a second frame frequency higher than the first frame frequency by duplicating the input image data to a plurality of frames. The display device also includes a release frame inserting unit which periodically designates release frames in the output image data for resolving a DC bias of one or more continuous frames and a data compensating unit which compensates for a value of the output image data or determines the value of the output image data.
Abstract:
The described technology relates to a liquid crystal display and a driving method thereof. The liquid crystal display includes a plurality of pixels arranged in a matrix form. The pixels include a liquid crystal capacitor including a pixel electrode and a common electrode as two terminals. A plurality of data lines transfer data to the plurality of pixels. The pixels include a first pixel and a second pixel, which are adjacent to each other. First and second common signals are applied to the common electrode of the first and second pixels, respectively. The second common signal is inverted to the first common signal. The first and second common signals swing between a first voltage and a second voltage. The polarity of the data voltage transferred by a data line with respect to the first common signal or the second common signal is constant during one frame.
Abstract:
Provided is a display device comprising a display panel including a plurality of pixels, one of the pixels includes a light emitting device, which is connected with a reference node to emit light, and a driving transistor connected between a power line, which is to receive a power supply voltage, and the reference node. a scan transistor, which is connected between a data line to receive a data signal and the driving transistor and receives a scan signal, a light receiving device, which is connected between a bias line to receive a bias voltage and the reference node, and receives the light, and a masking transistor which is connected between the reference node and the light receiving device and receives a masking signal.
Abstract:
A display device includes: a display panel, which displays an image; a panel driver, which drives the display panel; and a driving controller, which controls a drive of the panel driver. The driving controller includes a compensation determination block and a data compensation block. The compensation determination block is activated after a still image is displayed for a predetermined time or more and generates a compensation value based on a final afterimage component calculated using an afterimage algorithm obtained by a combination of a first afterimage calculation equation and a second afterimage calculation equation. The data compensation block receives an image signal with respect to a target image and reflects the compensation value to the image signal to generate a compensation image signal.
Abstract:
A display device includes a degradation compensator, a controller, a data driver, and a display panel. The degradation compensator generates a first fitting function and a second fitting function based on image data, generates a compensation function through a harmonic mean of the first and second fitting functions, and generates a compensation value based on the compensation function. The controller receives the compensation value, and generates input image data to which the compensation value is applied. The data driver receives the input image data to which the compensation value is applied, and converts the input image data into a data voltage. The display panel includes pixels, in which each of the pixels includes a pixel circuit which receives the data voltage and a light-emitting element electrically connected to the pixel circuit.
Abstract:
A display device includes a display panel, a scan driver, a data driver, a sensing circuit, and a controller configured to select a pixel row from a plurality of pixel rows in a vertical blank period of each frame period. The vertical blank period includes a sensing time in which the sensing circuit performs a sensing operation for the selected pixel row. The sensing circuit measures a first source voltage of a driving transistor of each pixel in the selected pixel row at a first time point of the sensing time, and measures a second source voltage of the driving transistor at a second time point of the sensing time. The controller predicts a current saturated source voltage of the driving transistor based on the first and second source voltages, and determines a threshold voltage change amount of the driving transistor based on a difference between a previous saturated source voltage and the current saturated source voltage.