Abstract:
A display device that has a function of emitting visible light and infrared light and a function of detecting light. The display device is a display device including a first light-emitting device, a second light-emitting device, and a light-receiving device, in a display portion. The first light-emitting device includes a first pixel electrode, a first optical adjustment layer, a first light-emitting layer, a second light-emitting layer, and a common electrode. The second light-emitting device includes a second pixel electrode, a second optical adjustment layer, the first light-emitting layer, the second light-emitting layer, and the common electrode. The light-receiving device includes a third pixel electrode, an active layer, and the common electrode. The active layer includes an organic compound. The first light-emitting device emits infrared light emitted by the first light-emitting layer. The second light-emitting device emits visible light emitted by the second light-emitting layer. The light-receiving device has a function of absorbing at least part of visible light and infrared light.
Abstract:
An object is to provide an organic compound with a low refractive index. Alternatively, a novel organic compound with a low refractive index and an electron-donating property is provided. Alternatively, an EL device with high emission efficiency is provided. An organic compound having an arylamine skeleton including a fluorine atom or an acridine skeleton including a fluorine atom and an EL device using the organic compound are provided. The EL device preferably includes a hole-injection layer containing the organic compound having an arylamine skeleton including a fluorine atom or an acridine skeleton including a fluorine atom and a substance showing an electron-accepting property with respect to the organic compound.
Abstract:
A light-emitting element having low driving voltage and high emission efficiency is provided. In the light-emitting element, a combination of a guest material and a host material forms an exciplex. The guest material is capable of converting triplet excitation energy into light emission. Light emission from the light-emitting layer includes light emission from the guest material and light emission from the exciplex. The percentage of the light emission from the exciplex to the light emission from the light-emitting layer is greater than 0 percent and less than or equal to 60 percent. The energy after subtracting the energy of light emission from the exciplex from the energy of light emission from the guest material is greater than 0 eV and less than or equal to 0.23 eV.
Abstract:
A light-emitting apparatus with low power consumption is provided. A light-emitting apparatus including a first light-emitting device and a first color conversion layer. The first light-emitting device includes an anode, a cathode, and an EL layer positioned between the anode and the cathode. The EL layer includes a layer including a material with a refractive index lower than or equal to 1.75 at 467 nm. The first color conversion layer includes a first substance capable of emission by absorbing light. Light emitted from the first light-emitting device enters the first color conversion layer.
Abstract:
A novel light-emitting element material is provided. Alternatively, a light-emitting element material capable of simplifying a process for manufacturing a light-emitting element is provided. Alternatively, a light-emitting element material capable of reducing the cost for manufacturing a light-emitting element is provided. Alternatively, one embodiment of the present invention provides a light-emitting element material capable of achieving a light-emitting element having favorable emission efficiency. A light-emitting element material including an organic compound which includes a first skeleton having a carrier-transport property and a second skeleton having a light-emitting property in one molecule and in which the molecular weight is less than or equal to 3000, is provided.
Abstract:
To increase emission efficiency of a fluorescent light-emitting element by efficiently utilizing a triplet exciton generated in a light-emitting layer. The light-emitting layer of the light-emitting element includes at least a host material and a guest material. The triplet exciton generated from the host material in the light-emitting layer is changed to a singlet exciton by triplet-triplet annihilation (TTA). The guest material (fluorescent dopant) is made to emit light by energy transfer from the singlet exciton. Thus, the emission efficiency of the light-emitting element is improved.
Abstract:
A novel organometallic complex is provided. An organometallic complex emitting green to blue phosphorescence is provided. An organometallic complex having a deep LUMO level and emitting green to blue phosphorescence is provided. A light-emitting element with high emission efficiency is provided. A light-emitting element emitting green to blue phosphorescence and having low drive voltage is provided. A light-emitting device with low power consumption is provided. The organometallic complex includes iridium and a ligand having a triazole skeleton. The triazole skeleton has a group including a pyridine ring or a group including a pyrimidine ring and an aryl group. One of nitrogen atoms included in the triazole skeleton is coordinated to the iridium. The aryl group is bonded to the iridium at the ortho position of the aryl group.
Abstract:
To provide a light-emitting element with high emission efficiency and low driving voltage. The light-emitting element includes a guest material and a host material. A HOMO level of the guest material is higher than a HOMO level of the host material. An energy difference between the LUMO level and a HOMO level of the guest material is larger than an energy difference between the LUMO level and a HOMO level of the host material. The guest material has a function of converting triplet excitation energy into light emission. An energy difference between the LUMO level of the host material and the HOMO level of the guest material is larger than or equal to energy of light emission of the guest material.
Abstract:
A light-emitting element that emits light with high color purity, a light-emitting element that emits light at high emission efficiency, or a light-emitting element with reduced power consumption. The light-emitting element includes a first electrode, a second electrode, and an EL layer. The first electrode is configured to reflect light. The second electrode is configured to reflect light and transmit light. The EL layer is between the first electrode and the second electrode. The EL layer includes a guest material. The guest material is configured to convert triplet excitation energy into light emission. The emission spectrum of the guest material in a dichloromethane solution has a peak in a wavelength region ranging from 440 nm to 470 nm and has a full width at half maximum of greater than or equal to 20 nm and less than or equal to 80 nm.
Abstract:
To increase emission efficiency of a fluorescent light-emitting element by efficiently utilizing a triplet exciton generated in a light-emitting layer. The light-emitting layer of the light-emitting element includes at least a host material and a guest material. The triplet exciton generated from the host material in the light-emitting layer is changed to a singlet exciton by triplet-triplet annihilation (TTA). The guest material (fluorescent dopant) is made to emit light by energy transfer from the singlet exciton. Thus, the emission efficiency of the light-emitting element is improved.