Abstract:
An object of one embodiment of the present invention is to provide a multicolor light-emitting element that utilizes fluorescence and phosphorescence and is advantageous for practical application. The light-emitting element has a stacked-layer structure of a first light-emitting layer containing a host material and a fluorescent substance, a separation layer containing a substance having a hole-transport property and a substance having an electron-transport property, and a second light-emitting layer containing two kinds of organic compounds that form an exciplex and a substance that can convert triplet excitation energy into luminescence. Note that a light-emitting element in which light emitted from the first light-emitting layer has an emission spectrum peak on the shorter wavelength side than an emission spectrum peak of the second light-emitting layer is more effective.
Abstract:
A semiconductor device includes a gate electrode, a gate insulating film which includes oxidized material containing silicon and covers the gate electrode, an oxide semiconductor film provided to be in contact with the gate insulating film and overlap with at least the gate electrode, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. In the oxide semiconductor film, a first region which is provided to be in contact with the gate insulating film and have a thickness less than or equal to 5 nm has a silicon concentration lower than or equal to 1.0 at. %, and a region in the oxide semiconductor film other than the first region has lower silicon concentration than the first region. At least the first region includes a crystal portion.
Abstract:
A semiconductor device with favorable reliability is provided. The semiconductor device includes a first insulator; a second insulator positioned over the first insulator; an oxide positioned over the second insulator; a first conductor and a second conductor positioned apart from each other over the oxide; a third insulator positioned over the oxide, the first conductor, and the second conductor; a third conductor positioned over the third insulator and at least partly overlapping with a region between the first conductor and the second conductor; a fourth insulator positioned to cover the oxide, the first conductor, the second conductor, the third insulator, and the third conductor; a fifth insulator positioned over the fourth insulator; and a sixth insulator positioned over the fifth insulator. An opening reaching the second insulator is formed in at least part of the fourth insulator; the fifth insulator is in contact with the second insulator through the opening; and the first insulator, the fourth insulator, and the sixth insulator have a lower oxygen permeability than the second insulator.
Abstract:
A semiconductor device having high operation frequency is provided. The semiconductor device includes a transistor including a first conductive layer, a first insulating layer, a second insulating layer, a first oxide, a second oxide, a third oxide, a third insulating layer, and a second conductive layer that are stacked in this order, and a fourth insulating layer. The first conductive layer and the second conductive layer include a region overlapping with the second oxide. In a channel width direction of the transistor, a level of the bottom surface of the second oxide is from more than or equal to −5 nm to less than 0 nm when a level of a region of the bottom surface of the second conductive layer which does not overlap with the second oxide is regarded as a reference.
Abstract:
Provided is a light-emitting element which includes a first electrode, a second electrode over the first electrode, and first and second light-emitting layers therebetween. The first light-emitting layer contains a first host material and a first light-emitting material, and the second light-emitting layer contains a second host material and a second light-emitting material. The first light-emitting material is a fluorescent material, and the second light-emitting material is a phosphorescent material. The level of the lowest triplet excited state (T1 level) of the first light-emitting material is higher than the T1 level of the first host material. A light-emitting device, an electronic device, and a lighting device including the light-emitting element are further provided.
Abstract:
A multicolor light-emitting element that utilizes fluorescence and phosphorescence and is advantageous for practical application is provided. The light-emitting element has a stacked-layer structure of a first light-emitting layer containing a host material and a fluorescent substance and a second light-emitting layer containing two kinds of organic compounds and a substance that can convert triplet excitation energy into luminescence. Note that light emitted from the first light-emitting layer has an emission peak on the shorter wavelength side than light emitted from the second light-emitting layer.
Abstract:
To increase emission efficiency of a fluorescent light-emitting element by efficiently utilizing a triplet exciton generated in a light-emitting layer. The light-emitting layer of the light-emitting element includes at least a host material and a guest material. The triplet exciton generated from the host material in the light-emitting layer is changed to a singlet exciton by triplet-triplet annihilation (TTA). The guest material (fluorescent dopant) is made to emit light by energy transfer from the singlet exciton. Thus, the emission efficiency of the light-emitting element is improved.
Abstract:
An oxide semiconductor film which has more stable electric conductivity is provided. The oxide semiconductor film comprises a crystalline region. The oxide semiconductor film has a first peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.4 nm−1 and less than or equal to 0.7 nm−1 in a region where a magnitude of a scattering vector is greater than or equal to 3.3 nm−1 and less than or equal to 4.1 nm−1. The oxide semiconductor film has a second peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.45 nm−1 and less than or equal to 1.4 nm−1 in a region where a magnitude of a scattering vector is greater than or equal to 5.5 nm−1 and less than or equal to 7.1 nm−1.
Abstract:
An imaging device with excellent imaging performance is provided. An imaging device that easily performs imaging under a low illuminance condition is provided. A low power consumption imaging device is provided. An imaging device with small variations in characteristics between its pixels is provided. A highly integrated imaging device is provided. A photoelectric conversion element includes a first electrode, and a first layer, a second layer, and a third layer. The first layer is provided between the first electrode and the third layer. The second layer is provided between the first layer and the third layer. The first layer contains selenium. The second layer contains a metal oxide. The third layer contains a metal oxide and also contains at least one of a rare gas atom, phosphorus, and boron. The selenium may be crystalline selenium. The second layer may be a layer of an In—Ga—Zn oxide including c-axis-aligned crystals.
Abstract:
The semiconductor device includes a first insulator over a substrate, a first oxide semiconductor over the first insulator, a second oxide semiconductor over the first oxide semiconductor, a first conductor and a second conductor in contact with the second oxide semiconductor, a third oxide semiconductor on the second oxide semiconductor and the first and second conductors, a second insulator over the third oxide semiconductor, and a third conductor over the second insulator. At least one of the first oxide semiconductor, the second oxide semiconductor, and the third oxide semiconductor has a crystallinity peak that corresponds to a (hkl) plane (h=0, k=0, l is a natural number) observed by X-ray diffraction using a Cu K-alpha radiation as a radiation source. The peak appears at a diffraction angle 2 theta greater than or equal to 31.3 degrees and less than 33.5 degrees.