摘要:
A method of activating a hydrogen storage alloy. The method includes the step of contacting the hydrogen storage alloy with an aqueous solution of an alkali metal hydroxide where the concentration of the alkali metal hydroxide is at least about 42 weight percent. The method produces a hydrogen storage alloy with increased surface area.
摘要:
A method of activating a hydrogen storage alloy or a hydrogen storage alloy electrode. The method includes the step of contacting the hydrogen storage alloy or hydrogen storage alloy electrode with an aqueous solution of an alkali metal hydroxide where the concentration of the alkali metal hydroxide is at least about 40 weight percent. The method produces a hydrogen storage alloy and hydrogen storage alloy electrode with increased surface area.
摘要:
An active composition for an electrode of an electrochemical cell. The active composition comprises an electrode material, and a nonfibrillating polymeric binder. The polymeric binder may comprise a fluoradditive. Also disclosed in an electrode and an electrochemical cell comprising the active composition.
摘要:
A novel method for forming powder of a hydrogen storage alloy without the need for further mechanical processing. The alloy powder may be adapted for use as the negative electrode material of rechargeable electrochemical, hydrogen storage cells. The method includes the step of controlling the hydrogen concentration within the hydrogen storage alloy to form powder where 90% of the particles are less than 250 microns in average dimension.
摘要:
A multi-phase metal hydride alloy material which is capable of reversibly absorbing and desorbing hydrogen includes a first main phase or group of phases having an ABx type crystalline structure and a second phase which has a concentration of a modifier element therein which is greater than the concentration of the modifier element in the first phase or group of phases. The modifier element functions to promote the formation of the second phase and may comprise a light rare earth element such as yttrium. The first phase or group of phases may incorporate one or more Laves phases such as a C14, C15, and/or C36 phase. Further disclosed are metal hydride batteries including the alloys.
摘要:
A solid state battery including at least one multilayered battery cell comprising: 1) a layer of negative electrode material; 2) a layer of positive electrode material; and 3) a layer of perovskite-type oxide material disposed between the layer of positive electrode material and the layer of negative electrode material, where said layer of perovskite-type oxide material is electrically insulating and capable of readily conducting or transporting protons.
摘要:
A system for the solid state storage of hydrogen in accordance with several exemplary embodiments is disclosed herein. The system includes a plurality of hydrogen storage containers. Each hydrogen storage container of the plurality of hydrogen storage containers has an inner chamber and an inlet. The inlet provides a pathway for introducing hydrogen gas into the inner chamber. The inner chamber having a solid hydrogen storage medium disposed therein. The system further includes an endplate manifold having a hydrogen receiving port, a plurality of hydrogen outlet ports, and a flow channel. The hydrogen flow channel is integrated into the endplate manifold. Each hydrogen outlet port is in fluid communication with the inlet of one of the plurality of hydrogen storage containers. The hydrogen flow channel provides fluid communication between the hydrogen receiving port and each hydrogen outlet port.
摘要:
The present invention relates to rechargeable nickel metal hydride batteries and methods for making the same. More particularly, the present invention relates to rechargeable nickel metal hydride batteries having a precharge in the negative electrode sufficient for oxidation prevention in the negative electrode. The present invention discloses a nickel metal hydride battery, wherein the precharge of the negative electrode may be supplied by a variety of sources. The positive active material of the positive electrode may have positive active particles, such as nickel hydroxide, having a precursor coating that incorporates cobalt material capable of forming a conductive network. Sources other than cobalt-containing materials in the positive electrode include hydrogen gas provided directly to the negative active material, nickel aluminum mixed with the negative active material, the etching of the negative active material with an alkaline solution and borohydride chemically charging the negative active material. Preferably, a majority of the precharge of the negative electrode is supplied by sources other than cobalt-containing materials in the positive electrode.
摘要:
A process for making a positive battery electrode material using a secondary metal. The secondary metal is preferably treated using an non-electrolytic process and formed into an active, positive battery electrode material by a precipitation reaction.
摘要:
Disclosed is a reversible, electrochemical cell having a high electrochemical activity, hydrogen storage negative electrode. The negative electrode is formed of a reversible, multicomponent, multiphase, electrochemical hydrogen storage alloy. The hydrogen storage alloy is capable of electrochemically charging and discharging hydrogen in alkaline aqueous media. In one preferred exemplification the hydrogen storage alloy is a member of the family of hydrogen storage alloys, derived from the V-Ti-Zr-Ni and V-Ti-Zr-Ni-Cr alloys in which the V, Ti, Zr, Ni and Cr are partially replaced by one or more modifiers, and the alloy has the composition:(V.sub.y'-y Ni.sub.y Ti.sub.x'-x Zr.sub.x Cr.sub.z).sub.a M'.sub.b M".sub.c M.sub.d.sup.ivwhere x' is between 1.8 and 2.2, x is between 0 and 1.5, y' is between 3.6 and 4.4, y is between 0.6 and 3.5, z is between 0.00 and 1.44, a designates that the V-Ni-Ti-Zr-Cr component as a group is from 70 to 100 atomic percent of the alloy, b,c,d,e, . . . , are the coefficients on the modifiers, and M', M", M.sup.iii, and M.sup.iv are modifiers which may be individually or collectively up to 30 atomic percent of the total alloy. The modifiers, M', M", M.sup.iii, and M.sup.iv are chosen from Al, Mn, Mo, Cu, W, Fe, Co, and combinations thereof.