摘要:
A technique efficiently determines acceptable link-based loop free alternates (LFAS) in a computer network. According to the novel technique, a protecting network device configured to protect a link (“protected link”) distinguishes other network devices (e.g., of the same domain as the protecting network device) as either network edge devices (i.e., an end point for external network traffic) or network core devices (i.e., not an end point for external network traffic). The protecting network device may then determine whether a neighboring network device loops toward a network edge device. If not, the protecting network device may determine that the neighboring network device is an acceptable LFA (e.g., for external network traffic). Notably, traffic directed to core devices may still loop, however, this traffic is generally internal (e.g., signaling) traffic, and may not be subject to the same operational constraints (e.g., protection) as external traffic.
摘要:
A technique calculates a shortest path for a traffic engineering (TE) label switched path (LSP) from a head-end node in a local domain to a tail-end node of a remote domain in a computer network. The novel path calculation technique determines a set of different remote domains through which the TE-LSP may traverse to reach the tail-end node (e.g., along “domain routes”). Once the set of possible routes is determined, the head-end node sends a path computation request to one or more path computation elements (PCEs) of its local domain requesting a computed path for each domain route. Upon receiving path responses for each possible domain route, the head-end node selects the optimal (shortest) path, and establishes the TE-LSP accordingly.
摘要:
In one embodiment, one or more path computation requests from path computation clients (PCCs) in a first network domain are received at a first border router (BR) arranged at the border of the first network domain and a second network domain. The first BR learns of a path communication element (PCE) in the second network domain. The PCE in the second network domain is informed of path computation information for the first network domain. One or more tunnels are established between the first BR and the PCE in the second network domain. One or more path computation requests from PCCs in the first network domain are passed from the first BR, through the one or more tunnels, to the PCE in the second network domain, to be serviced by the PCE in the second network domain using the path computation information for the first network domain.
摘要:
In one embodiment, a first path computation element (PCE) operates between first and second network domains, and is adapted to service requests from path computation clients (PCCs) in at least the first domain. In response to a backup event (e.g., failure of a second PCE), a backup PCE in the second domain may be informed of path computation information for the first domain used by the first PCE, and tunnels may be bi-directionally established between the first PCE and the backup PCE. Once the tunnels are established, the backup PCE may be advertised into the first domain, and the backup PCE may operate to load balance service requests for the first domain through the bi-directionally established tunnels.
摘要:
A technique protects against the failure of a border router between two domains in a computer network using Fast Reroute and backup tunnels. According to the technique, the protected border router advertises a list of all its adjacent next-hop routers (i.e., its “neighbors”). A neighbor in the first domain that is immediately upstream to the protected border router and that is configured to protect the border router (i.e., the “protecting router”) selects a neighbor in a second domain (i.e., a “next-next-hop,” NNHOP) to act as a “merge point” of all the NNHOPs of that domain. The protecting router calculates a backup tunnel to the merge point that excludes the protected border router and associates the backup tunnel with all “protected prefixes.” The merge point then “stitches” additional backup tunnels onto the backup tunnel to provide a stitched tunnel to each remaining NNHOP. When the protected border router fails, Fast Reroute is triggered, and all protected prefix traffic is rerouted onto the backup tunnel to the merge point, which either forwards the traffic to its reachable prefixes or to a corresponding stitched tunnel.
摘要:
In one embodiment, a node receives traffic sent from one or more sources toward one or more destinations (e.g., Multipoint-to-Point, MP2P traffic). The node may detect a burst of received traffic based on one or more characteristics of the burst traffic, and, in response, may dynamically apply traffic shaping to the burst traffic. The traffic shaping is adapted to forward burst traffic received below a configurable threshold at a configurable pace and to drop burst traffic received above the configurable threshold. In addition, the node may also store the burst traffic dropped by traffic shaping, and forwards the stored burst traffic toward its destination after a configurable delay.
摘要:
A technique propagates reachability information for a tail-end node of a traffic engineering (TE) label switched path (LSP) to a head-end node of the TE-LSP in a computer network. The TE-LSP preferably spans multiple domains of the network such that the tail-end node resides in a domain that is different (remote) from the domain of the head-end node. The inter-domain information propagation technique employs an Interior Gateway Protocol (IGP) to transmit the remote reachability information from a target node residing in the same domain as the tail-end node to the head-end node. The head-end node uses the remote information to calculate routes, i.e., address prefixes and associated attributes, reachable from the tail-end node for insertion into its routing table.
摘要:
A technique efficiently avoids transient routing disturbances in link state routing protocols with fragmented link state packets (LSPs) in a computer network. According to the novel technique, a link state router (LSR) specifies which of two or more links are to be advertised in each of two or more corresponding LSP fragments. The LSR advertises the states of the specified links in the corresponding LSP fragments to one or more other LSRs. In other words, each link of the LSR is assigned to a particular LSP fragment, and the state of the link is always to be advertised in that particular LSP fragment (i.e., no fragment wrapping). Upon receiving the LSP fragments, the other LSRs may update the correct link states based on the individual LSP fragments, i.e., without transient routing disturbances caused by fragment wrapping.
摘要:
A technique dynamically retrieves reachability information from a target node, including a tail-end or any intermediate node, along a traffic engineering (TE) label switched path (LSP) that spans multiple domains in a computer network. The interdomain information retrieval technique is illustratively based on a request/response signaling exchange whereby at least a portion of the reachability, i.e., routing, information maintained by the target node is propagated to a head-end node of the TE-LSP. The routing information may comprise a list of address prefixes reachable by the target node, but may optionally include next-hop and metric attributes associated with those prefixes. The head-end node uses the retrieved routing information to calculate routes reachable from the target node for insertion into its routing table.
摘要:
In one embodiment, a node receives traffic sent from one or more sources toward one or more destinations (e.g., Multipoint-to-Point, MP2P traffic). The node may detect a burst of received traffic based on one or more characteristics of the burst traffic, and, in response, may dynamically apply traffic shaping to the burst traffic. The traffic shaping is adapted to forward burst traffic received below a configurable threshold at a configurable pace and to drop burst traffic received above the configurable threshold. In addition, the node may also store the burst traffic dropped by traffic shaping, and forwards the stored burst traffic toward its destination after a configurable delay.