摘要:
In one embodiment, a Time-to-Live (TTL) field of a packet is used to signal information (other than normal other than a life span of the packet or distance information relative to the network node). The packet is sent through a network, which typically includes traversing one or more intermediate nodes resulting in a modification of its TTL field (e.g., each node reduces the TTL value). After receiving the packet, a network node interprets the current value of the TTL field to identify the particular information encoded in the TTL field. Typically the current value of the TTL field is compared to a range of possible values to accommodate different TTL reductions due to different paths through a network. Signaling using the TTL value may be advantageous in networks that perform Equal-Cost-Multi-Path (ECMP) routing as the TTL value does not effect this routing.
摘要:
In one embodiment, a clock on a network device is initialized, and then a first timing message is received at the network device from a reference device having a first timestamp indicating when the first timing message was transmitted from the reference device. The network device may then determine and store a one-way delay from the first timestamp to a first time at which the first timing message was received at the network device. In response to restarting the clock, the network device may receive a second timing message from the reference device having a second timestamp indicating when the second timing message was transmitted from the reference device. The network device may then calibrate the clock such that a second time at which the network device received the second timing message is the second timestamp plus the stored one-way delay.
摘要:
Methods and apparatus are disclosed for mapping prefixes and/or values of a hierarchical space to other representations while maintaining the original hierarchy, which may be especially useful in conjunction with associative memories, such as binary and ternary content-addressable memories. In one implementation, a set of prefixes associated with a hierarchical space is received. A new representation of the set of prefixes is developed, such as by using a trie representation, with the new representation maintaining the original hierarchical relationship. This new representation may be an optimized representation selected to reduce or minimize the depth of the trie or some other cost. A set of new prefixes are generated along with a set of lookup values. During processing, a value, such as that included in a packet, is converted to one of the lookup values, which is used to generate a lookup word for use in matching against the new prefixes.
摘要:
In one embodiment, for each particular multicast flow of a plurality of multicast flows of packets a particular consolidation encoding of a plurality of consolidation encodings is selected based on the sparseness of bit positions within a bit string corresponding to designated receiving packet switching devices of the particular multicast flow. The packet switching device sends one or more packets corresponding to said particular packet, with each of these one or more packets including designated receiving packet switching devices of the particular multicast flow in the header of said particular packet according to the particular consolidation encoding. In one embodiment, different consolidation encodings of the plurality of consolidation encodings are used for at least two different multicast flows of the plurality of multicast flows of packets. In one embodiment, each of said receiving packet switching devices is Bit Index Explicit Replication (BIER) Bit-Forwarding Router (BFR).
摘要:
In one embodiment, probe-packet discovery of entropy values causing specific paths to be taken through a network is performed. One embodiment sends, from a first network node to a second network node in a network, a plurality of Equal Cost Multipath (ECMP) path-taken probe packets, each with a different entropy label, to determine a particular entropy label for each particular ECMP path of a plurality of different ECMP paths between the first network node and the second network node that will cause a packet including the particular entropy label to traverse said particular ECMP path. The ECMP paths taken by the plurality of ECMP path-taken probe packets is analyzed to determine one or more entropy labels for each different ECMP path of the plurality of different ECMP paths that will cause a packet including one of said one or more entropy labels to traverse said different ECMP path.
摘要:
In one embodiment, probe-packet discovery of entropy values causing specific paths to be taken through a network is performed. One embodiment sends, from a first network node to a second network node in a network, a plurality of Equal Cost Multipath (ECMP) path-taken probe packets, each with a different entropy label, to determine a particular entropy label for each particular ECMP path of a plurality of different ECMP paths between the first network node and the second network node that will cause a packet including the particular entropy label to traverse said particular ECMP path. The ECMP paths taken by the plurality of ECMP path-taken probe packets is analyzed to determine one or more entropy labels for each different ECMP path of the plurality of different ECMP paths that will cause a packet including one of said one or more entropy labels to traverse said different ECMP path.
摘要:
Disclosed are, inter alia, methods, apparatus, computer-readable media, mechanisms, and means for load balancing manipulation of packet flows within a transport conduit (e.g., a tunnel, pseudo wire, etc.), typically using a load balancing value which is independent of standard routing-based parameters (e.g., source address, destination address, source port, destination port, protocol type, etc.). A load balancing value is included in encapsulated packets transported across a network using a transport conduit. This load balancing value can be used to load balance the individual flows/microflows within the transport conduit.
摘要:
In one embodiment, a clock on a network device is initialized, and then a first timing message is received at the network device from a reference device having a first timestamp indicating when the first timing message was transmitted from the reference device. The network device may then determine and store a one-way delay from the first timestamp to a first time at which the first timing message was received at the network device. In response to restarting the clock, the network device may receive a second timing message from the reference device having a second timestamp indicating when the second timing message was transmitted from the reference device. The network device may then calibrate the clock such that a second time at which the network device received the second timing message is the second timestamp plus the stored one-way delay.
摘要:
In one embodiment, an apparatus in a network determines particular metadata to communicate infrastructure information associated with a particular packet to another apparatus in the network. The apparatus sends into the network the particular packet including a metadata channel, comprising said particular metadata, external to the payload of the particular packet. Examples of infrastructure metadata carried in a packet include, but are not limited to, information defining service chaining for processing of the packet, contextual information for processing of the packet, specific handling instructions of the packet, and operations, maintenance, administration (OAM) instrumentation of the packet.
摘要:
In one embodiment, a router receives a real-time multimedia flow that comprises IP packets. The router then processes values included in the Identifier fields of the IP packets using resources similar to those used in the monitoring of RTP flows to identify metrics for the real-time multimedia flow. The metrics may be transferred to a remote management device for aggregation with metrics output by other routers located on the data path for the real-time multimedia flow.