摘要:
A method for forming a metal back-attached phosphor screen comprises the step of dissolving/removing or rendering highly resistant a specified area of a metal film formed on a phosphor screen by using a liquid that dissolves or oxidizes the metal film. After part of a metal film is removed or rendered highly resistant, an insulating or highly resistant inorganic material may be applied to the remaining ends thereof. Alternatively, an insulating or highly-resistant inorganic material may be added to a dissolving or oxidizing liquid to dissolve/remove or render highly resistant a metal film, and at the same time ends of the metal film are coated with the inorganic material. In this metal back-attached phosphor screen, electron emission elements and the phosphor screen are protected against destruction/deterioration by discharging.
摘要:
An oxide composite particle of the present invention is composed of at least one fine gold particle contained in a matrix of an oxide particle or at least one fine gold particle supported fixedly on the surface of an oxide particle, and absorbs a visible light having a specific wavelength. A phosphor of the invention has a thin film which is composed of such oxide composite particles on the surface of a phosphor particle of red or the like. The phosphor can be obtained by mixing phosphor particles into a dispersion of gold colloid/oxide composite particles, agitating the resultant mixture, and taking out the precipitated phosphor particles, followed by drying. Further, in a color filter of the invention, a filter layer of at least one color formed on an inner surface of a panel is a thin film composed of the above-described oxide composite particles. This provides a phosphor or color filter which is excellent in optical characteristics, heat resistance and non-toxicity and never interferes with the irradiation of a photoresist with ultraviolet rays, and realizes a color display which exhibits good luminous chromaticity and is excellent in brightness and contrast.
摘要:
Disclosed is a conductive antireflection film comprising a laminate structure consisting of a conductive layer and an insulating covering layer covering the surface of the conductive layer and a conductive member connected at one end to the conductive layer and exposed at the other end to the outside. The conductive member is brought into contact with an electrolytic solution so as to control the state of the metal contained in the conductive layer, making it possible to prevent effectively an electromagnetic wave from leaking to the outside and to obtain a clear image of a high contrast.