Abstract:
Embodiments of the invention relate to tilting pad bearing assemblies and apparatuses. The disclosed tilting pad bearing assemblies and apparatuses may be employed in downhole motors of a subterranean drilling system or other mechanical systems. In an embodiment, a bearing assembly or apparatus includes a support ring and a plurality of tilting pads. Each tilting pad is tilted and/or tiltably secured relative to the support ring. In some embodiments, one or more of the tilting pads include a plurality of superhard bearing segments assembled to form a superhard bearing surface. One or more seams may be positioned between adjacent superhard bearing segments of the superhard bearing segments. In other embodiments, one or more of the tilting pads may include at least one or only one superhard bearing segment, such as a polycrystalline diamond bearing segment.
Abstract:
Embodiments of the invention relate to a bearing assembly including at least one superhard bearing element having at least one bearing registration feature configured to facilitate orientating of a curved, pre-machined bearing surface thereof with respect to a bearing body, methods of fabricating such bearing assemblies, and bearing apparatuses incorporating such bearing assemblies. Subterranean drilling systems incorporating such bearing assemblies are also disclosed.
Abstract:
In an embodiment, a bearing assembly may include a support ring to which one or more superhard bearing elements may be mounted. The support ring may include one or more relief features configured to reduce residual stresses in the superhard bearing elements that are induced by brazing the superhard bearing elements to the support ring, operational loads, other processes, or combinations of the foregoing. Reducing the residual stresses in the superhard bearing elements may help prevent damage to the superhard bearing elements. The bearing assembly may be used in subterranean drilling systems and/or other types of systems.
Abstract:
Embodiments of the invention relate to tilting pad bearing assemblies and apparatuses. The disclosed tilting pad bearing assemblies and apparatuses may be employed in downhole motors of a subterranean drilling system or other mechanical systems. In an embodiment, a bearing assembly or apparatus includes a support ring and a plurality of tilting pads. Each tilting pad is tilted and/or tiltably secured relative to the support ring. In some embodiments, one or more of the tilting pads include a plurality of superhard bearing segments assembled to form a superhard bearing surface. One or more seams may be positioned between adjacent superhard bearing segments of the superhard bearing segments. In other embodiments, one or more of the tilting pads may include at least one or only one superhard bearing segment, such as a polycrystalline diamond bearing segment.
Abstract:
A cutting element assembly for use on a rotary drill bit for forming a borehole in a subterranean formation. A cutting element assembly includes a cutting element having a substrate. The cutting element assembly additionally includes a superabrasive material bonded to the substrate. The substrate extends from an end surface to a back surface. A base member is also coupled to the back surface of the substrate. Additionally, a recess is defined in the base member and a structural element is coupled to the base member. The cutting element assembly also includes a biasing element configured to selectively bias the structural element.
Abstract:
In an embodiment, a bearing assembly may include a support ring to which one or more superhard bearing elements may be mounted. The support ring may include one or more relief features configured to reduce residual stresses in the superhard bearing elements that are induced by brazing the superhard bearing elements to the support ring, operational loads, other processes, or combinations of the foregoing. Reducing the residual stresses in the superhard bearing elements may help prevent damage to the superhard bearing elements. The bearing assembly may be used in subterranean drilling systems and/or other types of systems.
Abstract:
Bearing apparatuses including contacting bearing surfaces comprising superhard materials are disclosed. In one embodiment, the present invention relates to bearings including polycrystalline diamond inserts or compacts defining a plurality of surfaces that move relative to one another and contact one another. For example, apparatuses may include radial bearings, or other bearings including arcuate bearing surfaces that more in relation to one another, without limitation. In one embodiment, a superhard bearing element may comprise a superhard table (e.g., polycrystalline diamond) forming an arcuate bearing surface. Further, such a superhard bearing element may comprise a chamfer formed about at least a portion of a periphery of the arcuate bearing surface. Bearing apparatuses including such bearing elements and various mechanical systems are disclosed.
Abstract:
In an embodiment, a bearing apparatus comprises a first bearing assembly including a plurality of circumferentially-spaced first bearing elements each of which includes a first bearing surface. The bearing apparatus further includes a second bearing assembly including a plurality of circumferentially-spaced second bearing elements each of which includes a second bearing surface oriented to engage the first bearing surfaces of the first bearing assembly during operation. At least one of the second bearing elements may be circumferentially spaced from an adjacent one of the second bearing elements by a lateral spacing greater than a lateral dimension of the at least one of the second bearing elements.
Abstract:
In an embodiment, a bearing assembly may include a support ring to which one or more superhard bearing elements may be mounted. The support ring may include one or more relief features configured to reduce residual stresses in the superhard bearing elements that are induced by brazing the superhard bearing elements to the support ring, operational loads, other processes, or combinations of the foregoing. Reducing the residual stresses in the superhard bearing elements may help prevent damage to the superhard bearing elements. The bearing assembly may be used in subterranean drilling systems and/or other types of systems.
Abstract:
Embodiments of the invention are directed to bearing assemblies configured to effectively provide heat dissipation for bearing elements, bearing apparatuses including such bearing assemblies, and methods of operating such bearing assemblies and apparatuses. In an embodiment, a bearing assembly includes a plurality of superhard bearing elements distributed about an axis. Each superhard bearing element of the plurality of superhard bearing elements has a superhard table including a superhard surface. The bearing assembly includes a support ring structure coupled to the plurality of superhard bearing elements. One or more of the superhard bearing elements includes a superhard table, which may improve heat transfer from such superhard bearing elements.