Abstract:
Various embodiments relate to a bearing assembly including a support ring configured to reduce thermal warping under operational temperature conditions, a bearing apparatus that may utilize such a thrust-bearing assembly, and applications that incorporate the disclosed bearing apparatuses such as downhole motors in subterranean drilling systems, directional drilling systems, and many other apparatuses. In an embodiment, a bearing assembly includes a plurality of superhard bearing elements distributed circumferentially about an axis. The thrust-bearing assembly further includes a support ring having the plurality of superhard bearing elements mounted thereto. The support ring includes at least one thermal-warping-reducing feature configured to reduce a radial moment, compared to if the at least one thermal-warping-reducing feature were absent from the support ring, which is thermally induced in the support ring when the support ring and the plurality of superhard bearing elements are exposed to operational temperature conditions.
Abstract:
Embodiments of the invention are directed to bearing assemblies configured to effectively provide heat dissipation for bearing elements, bearing apparatuses including such bearing assemblies, and methods of operating such bearing assemblies and apparatuses. In an embodiment, a bearing assembly includes a plurality of superhard bearing elements distributed about an axis. Each superhard bearing element of the plurality of superhard bearing elements has a superhard table including a superhard surface. The bearing assembly includes a support ring structure coupled to the plurality of superhard bearing elements. One or more of the superhard bearing elements includes a superhard table, which may improve heat transfer from such superhard bearing elements.
Abstract:
Bearing assemblies and apparatuses are disclosed. Such bearing assemblies may be employed in bearing apparatuses for use in downhole motors of a subterranean drilling system or other mechanical systems. In an embodiment of the present invention, a bearing apparatus includes a first bearing assembly including a first substantially continuous polycrystalline diamond bearing surface defining an annular surface, and a second bearing assembly including a second substantially continuous polycrystalline diamond bearing surface defining an annular surface. The second substantially continuous polycrystalline diamond bearing surface generally opposes the first substantially continuous polycrystalline diamond bearing surface.
Abstract:
Embodiments of the invention relate to tilting pad bearing assemblies and apparatuses. The disclosed tilting pad bearing assemblies and apparatuses may be employed in downhole motors of a subterranean drilling system or other mechanical systems. In an embodiment, a bearing assembly or apparatus includes a support ring and a plurality of tilting pads. Each tilting pad is tilted and/or tiltably secured relative to the support ring. In some embodiments, one or more of the tilting pads include a plurality of superhard bearing segments assembled to form a superhard bearing surface. One or more seams may be positioned between adjacent superhard bearing segments of the superhard bearing segments. In other embodiments, one or more of the tilting pads may include at least one or only one superhard bearing segment, such as a polycrystalline diamond bearing segment.
Abstract:
Apparatuses and methods are provided for manufacturing bearing assemblies. In accordance with one embodiment, a fixture is provided for use in brazing bearing elements to a bearing ring. The fixture comprises a substantially annular body and at least one or more force-applying mechanism associated with the annular body. The force applying mechanisms include a push rod disposed within a channel that is formed in the annular body, the push rod being displaceable within the channel. A biasing member is configured to bias the push rod in a radial direction relative to the annular body. In one embodiment, a plurality of force-applying mechanisms are circumferentially spaced about the substantially annular body. In one embodiment, the push rods extend radially inwardly from a peripheral surface of the body, while in another embodiment the push rods extend radially outwardly from peripheral surface of the body.
Abstract:
Bearing components, bearing assemblies and related methods are provided. In one embodiment, a bearing element includes a base layer and a polycrystalline diamond (PCD) layer comprising a plurality of PCD elements coupled with the base layer wherein each PCD element comprising a substrate and a diamond table. The plurality of PCD elements may be fit together to form a substantially continuous bearing surface. For example, the diamond tables may exhibit substantially square or rectangular geometries that are fit together to define the bearing surface. In other embodiments, the bearing elements may be spaced apart from one another. In other embodiments, the bearing element may include a single PCD element formed from a prefabricated PCD compact or cutting tool blank. Various bearing assemblies may incorporate such a bearing element including, for example, thrust bearings, journal bearings, and tilting pad bearing assemblies.
Abstract:
Bearing assemblies and apparatuses are disclosed. Such bearing assemblies may be employed in bearing apparatuses for use in downhole motors of a subterranean drilling system or other mechanical systems. In an embodiment of the present invention, a bearing apparatus includes a first bearing assembly including a first substantially continuous polycrystalline diamond bearing surface defining an annular surface, and a second bearing assembly including a second substantially continuous polycrystalline diamond bearing surface defining an annular surface. The second substantially continuous polycrystalline diamond bearing surface generally opposes the first substantially continuous polycrystalline diamond bearing surface.
Abstract:
Bearing assemblies, apparatuses, and motor assemblies using the same are disclosed. In an embodiment, a bearing assembly may include a plurality of superhard bearing elements distributed circumferentially about an axis. Each of the superhard bearing elements may include a bearing surface. The bearing assembly may also include a support ring structure having a support ring that carries the superhard bearing elements. The support ring structure may include at least one erosion resistant region exhibiting a higher erosion resistance than another region of the support ring.
Abstract:
Durability-enhanced bearing assemblies, apparatuses, and motor assemblies using the same are disclosed. In an embodiment, a bearing assembly may include a plurality of superhard bearing elements distributed circumferentially about an axis. Each of the superhard bearing elements includes a bearing surface. The bearing assembly may further include a support ring structure that carries the plurality of superhard bearing elements. The support ring structure may have a first portion that exhibits a first yield strength and a second portion that exhibits a second yield strength. The first yield strength of the first portion may be greater than the second yield strength of the second portion.
Abstract:
Apparatuses and methods are provided for manufacturing bearing assemblies. In accordance with one embodiment, a fixture is provided for use in brazing bearing elements to a bearing ring. The fixture comprises a substantially annular body and at least one or more force-applying mechanism associated with the annular body. The force applying mechanisms include a push rod disposed within a channel that is formed in the annular body, the push rod being displaceable within the channel. A biasing member is configured to bias the push rod in a radial direction relative to the annular body. In one embodiment, a plurality of force-applying mechanisms are circumferentially spaced about the substantially annular body. In one embodiment, the push rods extend radially inwardly from a peripheral surface of the body, while in another embodiment the push rods extend radially outwardly from peripheral surface of the body.