Abstract:
An optical interference display unit, at least comprises a light-incidence electrode and a light-reflection electrode located on a transparent substrate. The light-incidence electrode at least comprises a transparent conductive layer and a dielectric layer. The light-reflection electrode at least comprises an absorption layer and a reflective layer.
Abstract:
An optical interference reflective element has a light-incident electrode and a light-reflective electrode, and each or both of the two electrodes are made of a display part and a wiring part which are electrically connected to each other with a connection part. A plurality of the interference reflective elements are connected to form an electrode line by the wiring parts, and the electrode line is used in an optical interference reflective structure formed by the optical interference reflective elements that is operated in a passive matrix mode.
Abstract:
An optical interference display unit, at least comprises a light-incidence electrode and a light-reflection electrode located on a transparent substrate. The light-incidence electrode at least comprises a transparent conductive layer and a dielectric layer. The light-reflection electrode at least comprises an absorption layer and a reflective layer.
Abstract:
A structure of a micro electro mechanical system and a manufacturing method are provided, the structure and manufacturing method is adapted for an optical interference display cell. The structure of the optical interference display cell includes a first electrode, a second electrode and posts. The second electrode comprises a conductive layer covered by a material layer and is arranged about parallel with the first electrode. The support is located between the first plate and the second plate and a cavity is formed. In the release etch process of manufacturing the structure, the material layer protects the conductive layer from the damage by an etching reagent. The material layer also protects the conductive layer from the damage from the oxygen and moisture in the air.
Abstract:
An optical interference display unit with a first electrode, a second electrode and support structures located between the two electrodes is provided. The second electrode has at least a first material layer and a second material layer. At least one material layer of the two is made from conductive material and the second conductive layer is used as a mask while an etching process is performed to etch the first material layer to define the second electrode.
Abstract:
A first electrode and a sacrificial layer are sequentially formed on a substrate, and then first openings for forming supports inside are formed in the first electrode and the sacrificial layer. The supports are formed in the first openings, and then a second electrode is formed on the sacrificial layer and the supports, thus forming a micro electro mechanical system structure. Afterward, an adhesive is used to adhere and fix a protection structure to the substrate for forming a chamber to enclose the micro electro mechanical system structure, and at least one second opening is preserved on sidewalls of the chamber. A release etch process is subsequently employed to remove the sacrificial layer through the second opening in order to form cavities in an optical interference reflection structure. Finally, the second opening is closed to seal the optical interference reflection structure between the substrate and the protection structure.
Abstract:
A manufacturing method for optical interference type panel is provided. A patterned supporting layer is formed on a transparent substrate, and then a first electrode layer and an optical film are formed sequentially on the supporting layer and the transparent substrate. A sacrificial material layer is formed on the optical layer, and then, a backside exposure process is performed by using the supporting layer as a mask to pattern the sacrificial material layer. A portion of the patterned sacrificial material layer is removed to expose the optical film above the supporting layer to form a sacrificial layer, and then a second electrode layer is formed on the sacrificial layer between the adjacent supporting layers and portion of the optical film. Afterwards, the sacrificial layer is removed.