Abstract:
The present invention relates to a titanylphthalocyanine represented by the formula (1): comprising a polymorph having a peak at a Bragg angle (2θ±0.2°) in X-ray diffraction spectrum with CuK α-ray: 9.0°, 9.6°, 14.1°, 14.9°, 17.9°, 18.3°, 23.4°, 24.5° and 27.2°; and 1.3
Abstract:
A session identification unit (11) determines a session to which an incoming packet belongs, while a session relay unit (12-1-12-N) relays between a session with a transmission terminal and a session with a reception terminal. A packet scheduler (13) instructs and controls the delivery of packets from each session relay unit (12-1-12-N), and a delivery control unit (14) delivers packets from each session relay unit (12-1-12-N) based on the instruction. In the session relay unit (12-1), a transmission session processing unit (121-1) processes a session for transmitting data to the reception terminal, and a transmission buffer (122-1) stores received data until the end of a transmission. A reception session processing unit (123-1) processes a session for receiving data from the transmission terminal.
Abstract:
An object of the present invention is to provide a novel μ-oxo bridged heterometal phthalocyanine compound, and a production method such that the μ-oxo bridged heterometal phthalocyanine compound is obtained simply, selectively and with high yield. The μ-oxo bridged heterometal phthalocyanine compound has a structure in which the central metal atom (M1) in a metal phthalocyanine including M1 as central metal thereof is oxo-bridged with the central metal M2 in a metal phthalocyanine including M2 as central metal thereof.
Abstract:
A triarylamine dimer derivative is represented by the following chemical formula [1] (in the chemical formula [1]: —Ar1, —Ar2, —Ar3 and —Ar4 are aryl groups being to have a substitutional group respectively, —R1 and —R2 are same or different to each other and one thereof is selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxyl group and a halogen atom; m and n are from 0 to 4; and with a proviso that —Ar1 and —Ar2, —Ar3 and —Ar4 are being to bind respectively to compose a cyclic structure group having a nitrogen atom) having an amorphous phase indicated by spectrum of powder X-ray diffractometry. The triarylamine dimer derivative is used for a charge transport material, an electrophotographic photosensitive conductor having thereof, an electroluminescence elemental device having a hole transport material thereof
Abstract:
Disclosed is a blue luminous ink composition comprising a luminous compound represented by the formula: wherein R1 is a group selected from the group consisting of a hydrogen atom, an alkyl group having from 1 to 4 carbon atoms, an alkoxyl group having from 1 to 4 carbon atoms and a halogen atom, R is a group selected from the group consisting of a fluorine-comprising alkyl group having from 1 to 20 carbon atoms, a substituted or unsubstituted alkyl group having from 1 to 4 carbon atoms, a substituted or unsubstituted aralkyl group having from 7 to 10 carbon atoms and a substituted or unsubstituted aryl group having from 6 to 12 carbon atoms, M is a two-valent or three-valent metal, provided rare-earth metal and alkaline earth metal (IIa group) are eliminated, and n is an integer of 2 or 3. The blue luminous ink composition exhibits satisfactory emission intensity under ultraviolet irradiation.
Abstract:
A layered-form electrophotographic photoreceptor which is composed of a conductive substrate, a charge generating layer (CGL) laid on the conductive substrate, and a charge transporting layer (CTL) laid on the CGL, wherein the CGL includes .mu.-oxo-aluminum phthalocyanine dimer as a charge generating material (CGM), and the CTL comprises a specific hydrazone compound as a charge transporting material (CTM). The electrophotographic photoreceptor shows good stability and electric property (for example, good chargeability, low dark decay, and low residual potential), even if it is employed as a high-gamma photoreceptor which corresponds to a short wavelength light sauce such as LD ray and LED ray.
Abstract:
The present invention provides .mu.-oxo-gallium phthalocyanine dimer having a novel polymorph. The .mu.-oxo-gallium phthalocyanine dimer may be applied as a charge generator for an organic photoconductive material, such as a photoreceptor of practical use and a high-gamma photoreceptor. The resulting organic photoconductive material has good stability and good electronic properties. The .mu.-oxo-gallium phthalocyanine dimer having a novel polymorph which shows diffraction peaks at a Bragg angle (2 .theta..+-.0.2.degree.) of 6.8.degree., 12.9.degree., 19.0.degree., 19.6.degree., 20.3.degree., 25.5.degree., 25.9.degree. and 26.9.degree. in an X-ray diffraction spectrum by CuK .alpha.-ray.
Abstract:
A green or near infrared light absorbing water-soluble phthalocyanine or naphthalocyanine derivative which has excellent water resistance after dyeing, is provided. The present invention provides a phthalocyanine or naphthalocyanine derivative represented by the formula: ##STR1## wherein X represents a halogen atom substituted at nucleus; M represents two hydrogen atoms, a divalent metal atom, a trivalent mono-substituted metal atom, or a tetravalent di-substituted metal atom; m represents 4 or 8; and n represents an integer of 0 to 12.
Abstract:
Disclosed is a novel naphthalocyanine compound which strongly absorbs light of near infrared region and which is chemically stable and highly soluble to an organic solvent. The naphthalocyanine compound is represented by the following formula [1]; ##STR1## wherein X represents ##STR2## (provided that R.sup.1 and R.sup.2 respectively represent a hydroxyl group, an alkyl group, an aryl group or an alkoxy group,) and M represents 2H, a metal atom, a metal oxide residue or a metal chloride residue. The present invention also provides a process for producing the naphthalocyanine compound, an intermediate thereof and a process for producing the intermediate.
Abstract:
A system for coding information change picture elements in a facsimile signal, which is employed for coding the address of each information change picture element assuming information different from that of an immediately preceding picture element on each scanning line. A distance between the information change picture element and a final reference information change picture element selected from the information change picture elements of an immediately preceding scanning line and, if necessary, said scanning line is encoded in a manner to minimize the number of bits of each code word.