Abstract:
Minimum density pixels are always turned OFF. Maximum density pixels are always turned ON. The binary conversion errors obtained along the main scanning direction based on the maximum and minimum density pixels are subjected to modification processes with using the correction value “a”. Thus, binary conversion errors are gradually converted into the non-uniform value pattern IE[pos]. Accordingly, uniform conversion errors will not be distributed to pixels along each main scanning line. The leading edge S of the middle density region will not receive uniform conversion errors. Turned-On pixels will be generated properly non-uniformly, thereby preventing occurrence of any undesirable textures.
Abstract:
When a subject pixel has been turned OFF, an accumulated error value is calculated based on binary conversion. Then, the sum of the accumulated error value and the binary conversion error for the subject pixel is compared with a predetermined value. When the sum is less than the predetermined value, the binary conversion error for the subject pixel is multiplied with a coefficient so that the absolute value of the binary conversion error is decreased. Then, the absolute-decreased error is distributed to unprocessed neighboring pixels according to an error distribution matrix. Then, the binary conversion error for the subject pixel is stored in a working memory as a binary conversion error for the s-th pixel to be used in the process of the next pixel.
Abstract:
In the printer of the type in which the spacing between a print head and a sheet of paper supported on a platen can be adjusted depending upon the sheet used, the position in which the spacing is adjusted is freely selectable. When printing is effected on a sheet with tab labels, the position of the print head is specified so that the print head confronts the tab label, and then the spacing between the print head and the face of the print sheet is adjusted upon moving the print head to the specified position.
Abstract:
A controlling device may perform an image process on specific image data so as to generate processed image data, supply the processed image data to the print performing unit and perform, in order to compensate variability of discharging amount of ink droplets discharged from the plurality of nozzles, a specific process on a target pixel within target image data using correction data for a target nozzle which forms a dot at a position on a print medium corresponding to the target pixel. The correction data may be data acquired using two or more sets of characteristic data corresponding to two or more nozzles of the plurality of nozzles. The two or more nozzles may include the target nozzle and a specific nozzle. The specific nozzle may be to form a raster near a target raster formed on the print medium by the target nozzle.
Abstract:
A multifunction device including an image recording unit and a scanner unit is provided. The scanner unit includes an image readable plane. The image recording unit includes a first tray, a conveyer path to convey the recording sheet in a first orientation, and a second tray, which is formed along an edge of an opening formed on the front face, and in which the recording sheet having been conveyed in the conveyer path is disposed. The recording sheet in a maximum conveyable size for the conveyer path is disposed to occupy a discharge area in the second tray. A downstream end of the discharge area along a second orientation is in a displaced and downstream position with respect to a downstream end of an image readable area of the image readable plane along the second orientation for a first distance.
Abstract:
A print controller is provided for generating dot data, which specifies a dot formation state and which is to be provided to a printing unit. The printing unit is configured to execute, based on the dot data, dot-forming operations to form dots in dot rows extending in a prescribed direction by moving a print head in the prescribed direction while ejecting ink droplets from nozzles in the print head and to print an image by repeatedly executing the dot-forming operation to form a plurality of dot rows juxtaposed in a direction orthogonal to the prescribed direction. The print controller includes: a printing width determining unit; a density data generating unit; and a dot data generating unit. The printing width determining unit determines a printing width value corresponding to a working distance of the print head in the prescribed direction. The density data generating unit generates density data specifying ink densities related to the quantity of ink for each pixel based on image data specifying a gradation value for each pixel and based on the printing width value, the density data generating unit generating the density data so that an upper limit on a tolerable ink density per pixel grows smaller as the working distance of the print head in the prescribed direction corresponding to the printing width value grows shorter. The dot data generating unit generates dot data by executing a halftone process on the density data generated by the density data generating unit.
Abstract:
An image forming device includes a recording head, a first pair of conveying rollers, a second pair of conveying rollers, and a conveyance controller. The conveyance controller controls the first and second pairs of conveying rollers to halt a conveying operation of the recording medium when a trailing edge of the recording medium has moved to or exceeded a position downstream from the nip position of the first pair of conveying rollers by a first prescribed distance during a first prescribed period of time running from a time instant when the trailing edge of the recording medium has passed through the nip position of the first pair of the conveying rollers.
Abstract:
An image forming device performs a bi-directional printing operation and includes a unit that determines a first amount by calibrating a predetermined amount based on a first value relating to a positional offset of a print element, and a unit that determines a second amount by calibrating the predetermined amount based on a second value relating to a positional offset of another print element. A recording medium is conveyed in a conveying direction the first amount after one of forward and reverse prints and the second amount after the other of the forward and reverse prints.
Abstract:
An ink jet recording device includes a recording head, a conveying member, a platen, a supporting member, and a driving member. The recording head ejects ink droplets onto a recording medium. The conveying member conveys the recording medium in a conveying direction. The recording medium has a leading edge and a trailing edge in the conveying direction. The platen is disposed in confrontation with the recording head to support the recording medium while keeping a predetermined distance from the recording head. The supporting member is disposed in the platen to slide in the conveying direction while supporting the recording medium. The driving member drives the supporting member to start sliding in the conveying direction at a starting timing corresponding to a position of at least one of the leading edge and the trailing edge.
Abstract:
An image forming device includes a recording head, a first pair of conveying rollers, a second pair of conveying rollers, and a conveyance controller. The conveyance controller controls the first and second pairs of conveying rollers to halt a conveying operation of the recording medium when a trailing edge of the recording medium has moved to or exceeded a position downstream from the nip position of the first pair of conveying rollers by a first prescribed distance during a first prescribed period of time running from a time instant when the trailing edge of the recording medium has passed through the nip position of the first pair of the conveying rollers.