摘要:
A parking assisting apparatus and method that can precisely estimate the orientation of a parking space. A parking assisting apparatus for assisting parking a vehicle includes an obstacle detecting mechanism that detects an obstacle near the vehicle and an orientation information acquiring mechanism that acquires information as to an orientation of the vehicle. The apparatus estimates an orientation of the parking space that may exist near the vehicle based on the detection result of the obstacle detecting mechanism and the orientation information.
摘要:
A parking assisting apparatus and method that can precisely estimate the orientation of a parking space. A parking assisting apparatus for assisting parking a vehicle includes an obstacle detecting mechanism that detects an obstacle near the vehicle and an orientation information acquiring mechanism that acquires information as to an orientation of the vehicle. The apparatus estimates an orientation of the parking space that may exist near the vehicle based on the detection result of the obstacle detecting mechanism and the orientation information.
摘要:
A device 1 for measuring a propagation time of a sound wave comprises a sound source means 11 and a calculation means 12. The sound source means 11 outputs a time stretched pulse as a sound source signal input to a speaker 3. The calculation means 12 calculates a cross-correlation function of the time stretched pulse and the sound signal which is output from the speaker 3 and is received in a microphone 4. Based on the cross-correlation function, the propagation time of the sound wave between the speaker 3 and the microphone 4 is found.
摘要:
The present invention relates to a parking assist apparatus 10 used for a vehicle which has a four-wheel steering mode in which front wheels and rear wheels can be steered independently, comprising: traveling path calculation means for calculating a traveling path for guiding the vehicle to a target position; and assist means for assisting traveling of the vehicle to the target position, based on the traveling path calculated by the traveling path calculation means. In the four-wheel steering mode, the traveling path calculated by the traveling path calculation means includes a traveling path in which the front wheels and the rear wheels are steered in reverse directions, and said traveling path includes a section in which a constant point, which is an intersection of a center line of the vehicle in a back-and-forth direction and a line perpendicular to the center line from a turning center, creates a trajectory of a clothoid curve.
摘要:
To provide a parking support device for easily and quickly moving or rotating a target parking frame to an appropriate position. The parking support device includes a target parking position setting unit configured to set a target parking position at which a vehicle is to be parked with a target parking frame superimposed on an actual image displaying an area surrounding the vehicle. The parking support device guides the vehicle to the target parking position set by the target parking position setting unit. The target parking position setting unit moves the target parking frame initially displayed on a touch display to a position indicated by a coordinate point determined by a touch operation.
摘要:
To provide a parking support device for easily and quickly moving or rotating a target parking frame to an appropriate position. The parking support device includes a target parking position setting unit configured to set a target parking position at which a vehicle is to be parked with a target parking frame superimposed on an actual image displaying an area surrounding the vehicle. The parking support device guides the vehicle to the target parking position set by the target parking position setting unit. The target parking position setting unit moves the target parking frame initially displayed on a touch display to a position indicated by a coordinate point determined by a touch operation.
摘要:
Resonant frequencies f2 and f3 detected in a resonant space are determined as center frequencies of a dip. Based on measurement values at a speaker and a microphone in the resonant space, a basic amplitude frequency characteristic Ca and a target amplitude frequency characteristic Cd are found. A smoothness degree on a frequency axis is larger in the target amplitude frequency characteristic Cd than the basic amplitude frequency characteristic Ca. A damping level and quality factor of the dip are determined based on a difference between the basic amplitude frequency characteristic Ca and the target amplitude frequency characteristic Cd in the center frequencies f2 and f3 of the dip and frequencies near the center frequencies.
摘要:
Resonant frequencies f2 and f3 detected in a resonant space are determined as center frequencies of a dip. Based on measurement values at a speaker and a microphone in the resonant space, a basic amplitude frequency characteristic Ca and a target amplitude frequency characteristic Cd are found. A smoothness degree on a frequency axis is larger in the target amplitude frequency characteristic Cd than the basic amplitude frequency characteristic Ca. A damping level and quality factor of the dip are determined based on a difference between the basic amplitude frequency characteristic Ca and the target amplitude frequency characteristic Cd in the center frequencies f2 and f3 of the dip and frequencies near the center frequencies.
摘要:
A device 1 for measuring a propagation time of a sound wave comprises a sound source means 11 and a calculation means 12. The sound source means 11 outputs a time stretched pulse as a sound source signal input to a speaker 3. The calculation means 12 calculates a cross-correlation function of the time stretched pulse and the sound signal which is output from the speaker 3 and is received in a microphone 4. Based on the cross-correlation function, the propagation time of the sound wave between the speaker 3 and the microphone 4 is found.
摘要:
An improved acoustic characteristic adjustment device comprises signal processing units including high frequency convolution arithmetic sections, low frequency convolution arithmetic sections, and delay sections. The device further comprises: an operation section from which a listener inputs a target characteristic in order to adjust a desired acoustic characteristic; an impulse characteristic control section; and a delay time control section. The impulse characteristic control section calculates impulse response data to effect convolution arithmetics. The delay time control section calculates alignment delay times necessary for sounds emitted from the speakers to reach a listening position. The delay time control section also calculates correction times for compensating various phase deviations. Times obtained by correcting the alignment delay times with the correction times are set as the delay times of the delay sections, respectively.