Abstract:
Rotor blades and hub of the impeller are cleaned by means of a cleaning fluid jet which is directed along the rotational axis of the impeller onto the impeller. The cleaning fluid jet in this case is directed, or sprayed, towards the impeller by a feed nozzle which is arranged on the axis and oriented in the direction of the impeller along the axis. The feed jet in this case follows the axis and therefore strikes the hub of the impeller in the rotational center of the impeller. This achieves the effect of the cleaning fluid striking the impeller in the rotational center of the impeller. The cleaning fluid flows, therefore, along the hub surface and is carried radially into the radially outer regions by means of centrifugal forces.
Abstract:
The guiding device of a turbine has guide vanes which are rotatably mounted in the turbine housing. A sealing sleeve is arranged between the turbine housing and the guide vane stem. The additional axial compression spring ensures that the sealing sleeve is continuously pressed onto the guide vane mating contour, and that the axial gap and also the leakage flow are prevented as a result.
Abstract:
The hub/blade junction of each rotor blade is placed with respect to the scalloping surface (F1+F2) such that this surface is supported as symmetrically as possible by the rotor blade. The turbine wheel with three-dimensionally curved rotor blades has scalloping in the area of the hub rear wall, and in consequence is subject to reduced stresses caused by scalloping deformation.
Abstract translation:每个转子叶片的轮毂/叶片接合部相对于扇形表面(F 1 + F 2 2)放置,使得该表面被尽可能对称地支撑 转子叶片。 具有三维弯曲的转子叶片的涡轮机叶轮在轮毂后壁的区域中具有扇形,因此受到扇形变形引起的应力减小。
Abstract:
The guide device for the diffusor at the compressor impeller outlet of a radial compressor has guide blades with stepped inlet edges. The step is implemented by setting back the hub-side inlet edge. This meridional stepping divides the guide blades into two component blades, of which the first component blade is made longer than the second component blade. The set-back of the inlet edge of the hub-side component blade and the associated superposition of the noise fields which are produced on the front and rear inlet edge of the diffusor leads to improvement of the acoustic properties of the compressor.
Abstract:
The invention proposes a securing device (26) for securing a turbocharger (12) comprising a turbocharger casing (14) to a base (28). The securing device (26) has a first foot (30) which can be fixed in the base (28) and a second foot (32) which can be fixed in the base (28), it being possible for the two feet (30, 32) to be connected to the turbocharger casing (14) at an axial distance from one another. The second foot (32) has a casing connection region (34), which can be connected to the turbocharger casing (14), and a base connection region (36), which can be connected to the base (28). The casing connection region (34) is designed in the form of a partial circle arc or circle arc. An axial strut arrangement (38) connects the casing connection region (34) and the base connection region (36) and includes an angle α in the range from 0° to 60° with the base (28).
Abstract:
The cleaning device for the exhaust gas turbine comprises openings, which open out into the flow duct upstream of the nozzle ring, for injecting a cleaning liquid from the radially inner side into the annular flow duct, a cavity, which is connected to the openings, for distributing the cleaning liquid to the openings, and a supply line for supplying the cleaning liquid to the cavity. The cleaning device according to the invention provides a uniform distribution of water to nozzle ring or to the rotor blades of the turbine rotor wheel.
Abstract:
A method of clamping a rotationally symmetrical body (10) for the purpose of machining, in which method the body (10), with its first side (12), is pulled by means of a tensile force (F1), which acts in extension of the rotation axis (19, 19′) of the body (10) on the first side (12) of the body (10), against a supporting element (72) having a centering effect. A device for clamping a rotationally symmetrical body (10) for the purpose of machining, which device comprises a supporting element (72), against which the body (10) can be pulled, and a tie rod (64) which can act on and pull the body (10), to be clamped, axially and concentrically to the rotation axis (19, 19′) of the latter. The mounting of the tie rod (64) is designed in such a way that the tie rod (64) is axially guided with radial clearance (66) for the axial pulling movement. The tensile force (F1) of the tie rod (64) is preferably adjustable. A rotationally symmetrical body (10), in particular a rotor, which, on a first side (12), has a coupling unit (18), which is concentric with its rotation axis (19), and a bearing region (22) having at least three bearing surfaces (24) arranged concentrically to the rotation axis (19).
Abstract:
The fastening arrangement (26) for an impeller (22) on a shaft (14), in particular for an impeller (22) of a turbocharger on a turbocharger shaft (14), comprises a bush (34), which can be screwed onto a shaft journal (20) of the shaft (14), and a shaft-side hub extension (30) of the impeller (22) having a central recess (32), into which the bush (34) can be inserted in a frictional manner. The hub extension (30), at least in the region of its shaft-side end, is designed approximately in the form of a hollow cylinder. The fastening arrangement (26) also comprises a press sleeve (36) which can be frictionally connected radially on the outside to the hub extension (30).
Abstract:
An exemplary nozzle ring has two fastening rings and a plurality of guide vanes, wherein holes are provided in one of the fastening rings for accommodating pins of the guide vanes, and openings are provided in the other fastening ring for accommodating positioning aids on the guide vanes.
Abstract:
A lifting apparatus for assembly of exhaust turbocharger allows the removal of the rotor block from the housing in a horizontal direction. The lifting apparatus includes a cantilever, which is fastened on a vertical stop, i.e. on an axial end, of the housing, and on which there is arranged a structure which can be moved along the cantilever and which is likewise fastened on a vertical stop, i.e. an axial end of the rotor block.