Abstract:
A neonate incubator for positioning a neonate within a magnetic resonance imaging (MRI) device is provided. The neonate incubator can include RF shielding that can provide RF shielding during imaging, for example, while life support tubes are connected to the neonate during MRI imaging. The RF shielding can include a door to mate with a bore of the MRI device to provide the RF shielding, and a RF channel that extends along an axis that is substantially parallel to a longitudinal axis of the neonate incubator from an interior chamber of the neonate incubator through the RF shielding door.
Abstract:
Systems and methods of detecting a portion within tissue that has a variation of local magnetic susceptibility using an MRI device, including: transmitting a first spin-echo pulse sequence to the tissue, wherein the first spin-echo pulse sequence includes a first number of refocus pulses and a first TE value; transmitting a second spin-echo pulse sequence to the tissue, wherein the second spin-echo pulse sequence includes a second number of refocus pulses and a second TE value; obtaining a first image and a second image; determining one or more locations within the second image having a signal intensity that is different than the signal intensity of the same one or more locations within the first image; and identifying a portion of tissue that has a varied local magnetic susceptibility based on the determined one or more locations within the second image.
Abstract:
Generally, a system for generating a magnetic field having a desired magnetic field strength and/or a desired magnetic field direction is provided. The system can include a plurality of magnetic segments and/or a plurality of ferromagnetic segments. Each magnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. Each ferromagnetic segment can be positioned adjacent to at least one of the plurality of magnetic segments. In various embodiments, a size, shape, positioning and/or number of magnetic segments and/or ferromagnetic segments in the system, as well as a magnetization direction of the magnetic segments can be predetermined based on, for example, predetermined parameters of the system (e.g., a desired magnetic field strength, direction and/or uniformity of the magnetic field, a desired elimination of a magnetic fringe field and/or total weight of the system) and/or based on a desired application of the system (e.g., performing a magnetic resonance imaging of at least a portion of a patient and/or performing a magnetic resonance spectroscopy of a sample).
Abstract:
A shutting assembly for a magnetic resonance imaging device (MRD) bore aperture, comprising at least one first movable portion and at least one second portion affixed to the MRD, wherein the shutting assembly further comprising a normally closed or normally open sliding mechanism. The sliding mechanism couples at least one first moveable portion to at least one second portion affixed to the MRD, thereby enabling a reciprocal movement of at least one first moveable portion parallel to the MRD bore aperture in an upwards and downwards directions in respect to at least one second portion affixed to the MRD.
Abstract:
A radiofrequency (RF) shielding channel for a magnetic resonance imaging (MRI) device is provided. The RF shielding channel can include at least one conductive layer having a proximal end and a distal end. The RF shielding channel can include a connector to removably attach the proximal end of the at least one conductive layer to a bore of the MRI device. The at least one conductive layer can be extended in a longitudinal direction with respect to the bore of the MRI device between a first predetermined longitudinal dimension and a second predetermined longitudinal dimension, such that a RF shield is formed from the bore of the MRI device to the distal end of the at least one conductive layer. The RF shield can prevent an external RF radiation from entering the bore of the MRI device and/or an RF radiation emitted by the MRI device from exiting the bore.
Abstract:
Systems and methods for simultaneous acquisition of MRI data and PET data of a subject are disclosed. The system can include a RF coil surrounding the subject and a PET detectors array surrounding the RF coil to generate the MRI data and the PET data of the subject, respectively. The system can include a RF shield positioned between the RF coil and the PET detectors array to prevent an interference between the RF coil and the PET detectors array to thereby allow simultaneous acquisition of the MRI data and the PET data without any one of the RF coil, the PET detectors array or the subject being moved during the imaging. The system can include an analysis unit to generate, based on the simultaneously acquired MRI data and PET data, combined PET-MRI images of the subject that include a spatially and temporally registered structural, functional and/or molecular data acquired under identical physiological conditions.
Abstract:
A method and system are provided for providing values for control signals for a pulsed magnetic resonance spectrometer such as an NMR spectrometer or an MRI apparatus. The AC output(s) corresponding to a particular signal (e.g. a magnetization or gradient pulse or pulse sequence) originating from a source spectrometer is measured and stored by an independent control unit. The digital output of the independent control unit is then connected to the digital input of the control electronics of a target pulsed magnetic resonance spectrometer, the value of the digital output varied until the AC output(s) of the appropriate signal source of the target spectrometer matches that of the corresponding output(s) of the source spectrometer, corrected, if necessary, for differences in magnetic field strengths.
Abstract:
The present invention provides an MRI-based hazard screening system for detecting contaminating particles within or on the surface of an object, the system characterized by a. a sampling environment adapted for at least partially confining said object; said sampling environment is in fluid communication with at least one inlet and at least one fluid outlet; b. a fluid streamer for streaming a fluid, throughout said at least one inlet, towards said sampling environment where said fluid effectively interfaces said object; and further throughout said at least one outlet; c. an MRI device in fluid communication with said at least one outlet, adapted for providing an image of said particles streamed by said fluid thereby screening the presence of said particles within or on the surface of said object.
Abstract:
A mechanical clutch for preventing damage to a capacitor of an MRI device. The clutch prevents the application of excessive torque via the tuning rods of the gradient coil of the MRI device. The mechanical clutch allows the tuning rods to slip (disengage) when the capacitor reaches the end of its adjustment range.
Abstract:
An electrically earthed protecting sleeve that reduces the electromagnetic energy propagation from a magnetic bore to the outer environment surrounding a magnet. The sleeve has a distal portion located within an open bore of an magnetic resonance device (MRD) and a proximal portion attachable to an aperture of the MRD. The sleeve accepts a non-imaged portion of a body portion inserted within the bore while the imaged portion protrudes from the distal end of sleeve.