Abstract:
A method of registering and modeling a deformable shape in a digitized image is provided, comprising the steps of providing a measurement matrix W of N measurements of P points of a D-dimensional deformable shape, determining a basis number K for the N measurements, wherein K
Abstract:
A method for measuring ventricular dimensions from M-mode echocardiograms, includes providing a digitized M-mode echocardiogram image, running a plurality of local classifiers, where each local classifier trained to detect a landmark on either an end-diastole (ED) line or an end-systole (ES) line in the image, recording all possible landmarks detected by the classifiers, where a search range in an N-dimensional parameter space defined by the landmarks for each dimension is reduced to a union of subsets, where each dimension of the parameter space corresponds a landmark, for each combination of possible landmarks, checking if an order of the landmarks is consistent with a known ordering of the landmarks, and if the order is consistent, running a global detector on each consistent combination of landmarks to find a landmark combination with a highest detection probability as a confirmed landmark detection, where the landmarks are used for measuring ventricular dimensions.
Abstract:
A method and system of real-time obstacle detection from a moving vehicle is provided. The method and system use a calibrated image capturing device. The method and system use a motion estimation technique to pick points with reliable image motion flows, and performs very fast sparse matching between the image motion flows and true motion flows calculated from the ego-motion of the image capturing device. Any mismatch between the image motion flows and the true motion flows are verified over time to achieve robust obstacle detection.
Abstract:
A method for detecting fetal anatomic features in ultrasound images includes providing an ultrasound image of a fetus, specifying an anatomic feature to be detected in a region S determined by parameter vector θ, providing a sequence of probabilistic boosting tree classifiers, each with a pre-specified height and number of nodes. Each classifier computes a posterior probability P(y|S) where yε{−1,+1}, with P(y=+1|S) representing a probability that region S contains the feature, and P(y=−1|S) representing a probability that region S contains background information. The feature is detected by uniformly sampling a parameter space of parameter vector θ using a first classifier with a sampling interval vector used for training said first classifier, and having each subsequent classifier classify positive samples identified by a preceding classifier using a smaller sampling interval vector used for training said preceding classifier. Each classifier forms a union of its positive samples with those of the preceding classifier.
Abstract:
A system and method for local deformable motion analysis accurately tracks the motion of an object such that local motion of an object is isolated from global motion of an object. The object is viewed in an image sequence and image regions are sampled to identify object image regions and background image regions. The motion of at least one of the identified background image regions is estimated to identify those background image regions affected by global motion. Motion from multiple background image regions are combined to measure the global motion in that image frame. The measured global motion in the object image regions are compensated to measure local motion of the object and the local motion of the object is tracked.
Abstract:
A method for downsampling fluoroscopic images and enhancing guidewire visibility during coronary angioplasty includes providing a first digitized image, filtering the image with one or more steerable filters of different angular orientations, assigning a weight W and orientation O for each pixel based on the filter response for each pixel, wherein each pixel weight is assigned to a function of a maximum filter response magnitude and the pixel orientation is calculated from the angle producing the maximum filter response if the magnitude is greater than zero, wherein guidewire pixels have a higher weight than non-guidewire pixels, and downsampling the orientation and weights to calculate a second image of half the resolution of the first image, wherein the downsampling accounts for the orientation and higher weight assigned to the guidewire pixels.
Abstract:
A system and method for detecting an object in a high dimensional image space is disclosed. A three dimensional image of an object is received. A first classifier is trained in the marginal space of the object center location which generates a predetermined number of candidate object center locations. A second classifier is trained to identify potential object center locations and orientations from the predetermined number of candidate object center locations and maintaining a subset of the candidate object center locations. A third classifier is trained to identify potential locations, orientations and scale of the object center from the subset of the candidate object center locations. A single candidate object pose for the object is identified.
Abstract:
A method and system for extracting motion-based layers from fluoroscopic image sequences are disclosed. Portions of multiple objects, such as anatomical structures, are detected in the fluoroscopic images. Motion of the objects is estimated between the images is the sequence of fluoroscopic images. The images in the fluoroscopic image sequence are then divided into layers based on the estimated motion. In a particular implementation, the coronary vessel tree and the diaphragm can be extracted in separate motion layers from coronary angiograph fluoroscopic image sequence.
Abstract:
A system and method for populating a database with a set of image sequences of an object is disclosed. The database is used to detect localization of a guidewire in the object. A set of images of anatomical structures is received in which each image is annotated to show a guidewire, catheter, wire tip and stent. For each given image a Probabilistic Boosting Tree (PBT) is used to detect short line segments of constant length in the image. Two segment curves are constructed from the short line segments. A discriminative joint shape and appearance model is used to classify each two segment curve. A shape of an n-segment curve is constructed by concatenating all the two segment curves. A guidewire curve model is identified that includes a start point, end point and the n-segment curve. The guidewire curve model is stored in the database.
Abstract:
A system and method for image segmentation using statistical clustering with saddle point detection includes representation means for representing the image data in a joint space of dimension d=r+2 that includes two special coordinates, where r=1 for gray-scale images, r=3 for color images, and r>3 for multi-spectral images; partitioning means for partitioning the data set comprising a plurality of image data points into a plurality of statistically meaningful clusters by decomposing the data set by a mean shift based data decomposition; and characterization means for characterizing the statistical significance of at least one of a plurality of clusters of data points by selecting a cluster and computing the value of a statistical measure for the saddle point lying on the border of the selected cluster and having the highest density.