Abstract:
An organometallic complex emitting blue phosphorescence which can be manufactured inexpensively is provided. An organometallic complex in which nitrogen at the 1-position of a 5-aryl-4H-1,2,4-triazole derivative is coordinated to a Group 9 metal or a Group 10 metal, the aryl group is bonded to the Group 9 metal or the Group 10 metal, and the 5-aryl-4H-1,2,4-triazole derivative is a 3-aryl-5,6,7,8-tetrahydro-4H-[1,2,4]triazolo[4,3-a]pyridine derivative is provided. The organometallic complex emits green to blue phosphorescence and has a cost advantage.
Abstract:
Provided are organometallic complexes that can exhibit phosphorescence. One of the novel organometallic complexes is represented by General Formula (G1). In General Formula (G1), R1 represents any of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent, and an aralkyl group having 7 to 10 carbon atoms which may have a substituent. In addition, R2 represents any of an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent, and an aryl group having 6 to 12 carbon atoms which may have a substituent. Further, Ar represents an arylene group having 6 to 13 carbon atoms which may have a substituent. Further, M represents a Group 9 element or a Group 10 element.
Abstract:
An object is to provide a novel organometallic complex capable of emitting phosphorescence by using, as a ligand, an organic compound with which a variety of derivatives can be easily synthesized. Another object is to provide an organometallic complex having high heat resistance. Other objects are to provide a light-emitting element having high emission efficiency and to provide a light-emitting device, an electronic device, and a lighting device having reduced power consumption. Provided are an organometallic complex including a structure represented by the following General Formula (G1), and a light-emitting element, a light-emitting device, an electronic device, and a lighting device formed using the organometallic complex including the structure represented by the following General Formula (G1).
Abstract:
A light-emitting element material including an ionic iridium complex in which a 2,6-bis(2-picolinyl)pyridine structure is coordinated to iridium is provided. Alternatively, a light-emitting element material including an ionic iridium complex represented by the following structural formula (1) is provided. In addition, a light-emitting element including the light-emitting element material is provided.
Abstract:
An organometallic complex having a structure represented by the following general formula (G1) is provided. (In the formula, A represents an aromatic hydrocarbon group having 6 to 25 carbon atoms. Further, Z represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an aryl group having 6 to 25 carbon atoms. In addition, Ar1 represents an aryl group having 6 to 25 carbon atoms. R1 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Further, M is a central metal and represents an element belonging to Group 9 or Group 10.)
Abstract:
It is an object of the present invention to provide an organometallic complex which can increase recombination efficiency of electrons and holes. One aspect of the present invention is an organometallic complex having a structure represented by a general formula (1), wherein each of R1 and R2 is any of a halogen group, a —CF3 group, a cyano group, and an alkoxycarbonyl group, each of R3 and R4 is any of hydrogen and an alkyl group having 1 to 4 carbon atoms, and M is an element that belongs to Group 9 or 10 of the periodic table.
Abstract translation:本发明的目的是提供一种能提高电子和空穴的复合效率的有机金属络合物。 本发明的一个方面是具有由通式(1)表示的结构的有机金属配合物,其中R 1和R 2各自为卤素基,-CF 3基,氰基和烷氧基羰基中的任一个,各自为 R 3和R 4是氢和具有1至4个碳原子的烷基中的任何一个,M是属于周期表第9或10族的元素。
Abstract:
Disclosed are an organometallic complex emitting red light with high color purity. An organometallic complex having a structure represented by the following general formula (G1) is provided. In the formula, of R1 to R13, at least one represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms and the other or others represent hydrogen. M represents a central metal, which is a Group 9 or Group 10 element. L represents a monoanionic ligand, and n is 2 when the central metal is a Group 9 element or 1 when the central metal is a Group 10 element.
Abstract:
Disclosed are an organometallic complex and an electronic device including a light-emitting device having the organometallic complex. The organometallic complex is ortho-metalated by a ligand with a diphenylquinoxaline moiety having an electron-withdrawing group on the phenyl groups. The ability of the organometallic complex to provide a red-emissive light-emitting device with excellent color purity and an extremely long lifetime enables the production of an electronic device with a full-color display portion with excellent color productivity and durability.
Abstract:
A quinoxaline derivative expressed by the general formula (1) is provided. (Each of R1 to R12 represents one of a hydrogen atom, a halogen atom, an alkyl group, an alkoxyl group, an acyl group, a dialkyl amino group, a diarylamino group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocycle group. Ar1 represents one of a substituted or unsubstituted biphenyl group and a substituted or unsubstituted terphenyl group, and Ar2 represents one of a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, and a substituted or unsubstituted monocyclic heterocycle group.)
Abstract:
To provide a light-emitting element, a light-emitting device, and an electronic device each formed using the organometallic complex represented by General Formula (G1) as a guest material and a low molecule compound as a host material.