Abstract:
Methods and apparatus for communication over a block-coherent communication system are described. The present invention is directed to methods of interleaving coded bits that are encoded by codes, e.g., LDPC codes, having graph structures largely comprised, e.g., of multiple identical copies of a much smaller graph.
Abstract:
Methods and apparatus for allocating and hopping tones for uplink communications purposes in adjacent sectors and neighboring cells of an OFDM system are described. Physical tones used in each sector and cell are allocated to tone hopping sequences according to a tone to tone hopping sequence allocation function which uses both a cell identifier and sector identifier. Different sectors and cells use different tone to tone hopping sequence allocation functions through the use of different cell and/or sector identifiers to minimize the number of collisions between hopping sequences of adjacent sectors and neighboring cells. Uplink tone hopping sequences, corresponding to logical tones are allocated to uplink communications channels. Uplink communications channels are used by wireless terminals, e.g., mobile nodes, to transmit data to base stations. Over time, a wireless terminal uses the tones included in the uplink tone hopping sequences corresponding to uplink communications channels it is authorized to use.
Abstract:
Special DC tone treatment in a wireless communications system, e.g., an OFDM system, is discussed. In the downlink, a wireless terminal receiver introduces self-interference at the DC tone from the RF/baseband conversion. A base station every so often does not transmit on the downlink DC tone while continuing to transmit on other downlink tones. Wireless terminals measure received signal on the downlink DC tone during the time of suspended DC tone transmission, estimate self-interference and apply a correction to other received downlink DC tones. In the uplink DC tone interference is a composite of the assigned wireless terminal transmitter's baseband/RF conversion self-interference and air link noise. During one symbol interval of an N symbol interval dwell, the uplink DC tone is reserved for a special modulation symbol, which is a predetermined function of the other N-1 modulation symbols. At the base station, its receiver receives a set of modulation symbols conveyed by the uplink DC tone for a dwell, calculates the average DC component and corrects the received N-1 modulation symbols.
Abstract:
Improvements in connector headers of implantable medical devices (IMDs) for making electrical and mechanical connections with a connector element of a proximal connector assembly of an electrical medical lead and components thereof are disclosed. A connector block disposed within a header body of the connector header has a threaded bore aligned with a header grommet aperture and a connector block bore aligned with a header connector bore. A penetrable grommet is disposed within the header grommet aperture, and a setscrew is threaded into the threaded bore having a setscrew socket disposed to be engaged by the tool inserted through the penetrable grommet within the header grommet aperture to enable rotation of the setscrew within the threaded bore to tighten the setscrew against or to loosen the setscrew from a lead connector element received in the header connector bore.
Abstract:
A base station selects a maximum rate option indicator value for an uplink communications segment, e.g., uplink traffic channel segment, and transmits the selected indicator value, e.g., as part of the assignment message. The maximum rate option indicator value indicates to the wireless terminal a maximum allowed data rate option that the wireless terminal is permitted to use for the corresponding assigned uplink communications segment, the wireless terminal determining the actual uplink rate option used. Each uplink data rate option corresponds to: a number of information bits to be communicated in an uplink communication segment, a coding rate, and a modulation method. Some embodiments include multiple types of maximum uplink rate option indicators, e.g., a first type using a single bit and a second type using at least three bits. Different modulation methods are, in some embodiments, used for communicating the different types of maximum uplink rate option indicators.
Abstract:
A wireless terminal receives an uplink traffic channel segment assignment including a maximum uplink rate option indicator. Each uplink rate option corresponds to a number of information bits, coding rate and modulation method. The maximum rate option indicator indicates the highest rate option that the wireless terminal is permitted to use when transmitting in the assigned traffic channel segment from the perspective of the base station. In some embodiments, the wireless terminal uses interference measurements to further quality, e.g., conditionally reduce, the maximum uplink rate option that may be used. Then, the wireless terminal selects an uplink rate option to use which is less than the determined allowed maximum uplink rate option, e.g., based on the amount of user data to communicate. The wireless terminal transmits data in the assigned uplink traffic channel segment in accordance with the wireless terminal selected uplink rate.
Abstract:
Methods and apparatus for encoding codewords which are particularly well suited for use with low density parity check (LDPC) codes and long codewords are described. The described methods allow encoding graph structures which are largely comprised of multiple identical copies of a much smaller graph. Copies of the smaller graph are subject to a controlled permutation operation to create the larger graph structure. The same controlled permutations are directly implemented to support bit passing between the replicated copies of the small graph. Bits corresponding to individual copies of the graph are stored in a memory and accessed in sets, one from each copy of the graph, using a SIMD read or write instruction. The graph permutation operation may be implemented by simply reordering bits, e.g., using a cyclic permutation operation, in each set of bits read out of a bit memory so that the bits are passed to processing circuits corresponding to different copies of the small graph.
Abstract:
Methods and apparatus for encoding codewords which are particularly well suited for use with low density parity check (LDPC) codes and long codewords are described. The described methods allow encoding graph structures which are largely comprised of multiple identical copies of a much smaller graph. Copies of the smaller graph are subject to a controlled permutation operation to create the larger graph structure. The same controlled permutations are directly implemented to support bit passing between the replicated copies of the small graph. Bits corresponding to individual copies of the graph are stored in a memory and accessed in sets, one from each copy of the graph, using a SIMD read or write instruction. The graph permutation operation may be implemented by simply reordering bits, e.g., using a cyclic permutation operation, in each set of bits read out of a bit memory so that the bits are passed to processing circuits corresponding to different copies of the small graph.
Abstract:
A lottery machine preventing lotteries from drawing out illegally mainly includes a base, a lottery moving device, a face plate and a coil spring. A micro switch is provided on one of two parallel side plates of the base, and held in ON condition by a stop pushed by the lottery moving device laid between two rails on the left side plate to move back and forth. A lottery is normally moved out of an outlet of the face plate by turning on a motor of the lottery moving device. But when a lottery is to be pulled out unlawfully, the lottery moving device can be moved forward by an external force pulling the lottery, cutting off the micro switch to stop the lottery moving device. Then the lottery may be pressed down firmly by an activating plate against a guider under the outlet, unable to be pulled out unlawfully.
Abstract:
A roller mechanism for a lottery ticket machine includes a face plate, a compartment, a roller unit, two position hook bars, a gear unit, and a motor device. The roller unit has a main and a subordinate rollers both provided with a pattern. The motor has a worm to rotate the gear unit and then the rollers. The position hook bars press elastically the subordinate roller to engage the main roller. The main roller rotates the subordinate roller in the reverse direction, rolling out a lottery ticket out from the two rollers. But when a lottery ticket is pulled by external force, the patterns of the rollers clamp the upper and the lower surface of the lottery ticket and increase friction, and the subordinate roller shrinks inward the position hook bars to engage tightly the main roller to prevent the lottery ticket from being pulled out.