Abstract:
A first navigation device records first direction information as the first navigation device traverses a route from a first location to a second location, and transmits the first direction information to a second navigation device while the second navigation device is following the first navigation along the route. After recording the first direction information and while transmitting the first direction information, the first navigation device records second direction information as the first navigation device traverses the route from the second location to a third location. The first navigation device transmits the second direction information to the second navigation device. The first direction information and the second direction information include information that allows the second navigation device to follow the route traversed by the first navigation device.
Abstract:
A device, provided at a network edge, receives a radio frequency signal from a user equipment, and converts the radio frequency signal into an electrical signal. The device also receives, from a network controller, at least one of control information, schedule information, or congestion management information. The device performs baseband signal processing on the electrical signal, based on at least one of the control information, the schedule information, or the congestion management information, to create a modified signal. The device provides the modified signal to the network controller.
Abstract:
A system receives traffic information that identifies an application installed on a user device and resources being used to process traffic associated with the application; obtains, as a result of receiving the traffic information, a policy that identifies a particular amount of resources authorized for processing particular traffic associated with the application; determines that an amount of the resources being used to process the traffic exceeds the particular amount of resources authorized for processing the particular traffic; and transmits a notification to cause the traffic to be controlled by a base station to reduce the amount of the resources to a level less than the particular amount of resources.
Abstract:
A method may include monitoring available radio access networks for information on one or more of types of radio access technologies, measurements of signal quality, measurements of signal strengths, or carrier identifiers of the available radio access networks; calculating network priorities for the available radio access networks based on the monitored information; detecting a border condition, the border condition based on a decrease in the measurements of signal quality or the measurements of signal strength; selecting, when a border condition is detected, a new radio access network from the available radio access networks based on the calculated network priorities of the available radio access networks; and connecting to a communication channel using the selected available radio access network.
Abstract:
A mobile device may determine applications that are executed by the mobile device. The mobile device may further determine handoff parameters, relating to performance of a handoff operation in a cellular network. The handoff parameters may be determined based on the applications being executed by the mobile device. A handoff operation may be performed based on the determined handoff parameters.
Abstract:
An outdoor broadband unit implements full IP-based routing between a wide area network (WAN)-side interface (such as a Long-Term Evolution (LTE) air interface) and a local area network (LAN)-side interface (such as a home network using MoCA protocol). The outdoor broadband unit maintains a routing table for all connections through an internal routing system based on matching between WAN-side Internet Protocol (IP) addresses and/or ports and LAN-side IP addresses and/or ports. The outdoor broadband unit may support both connection-oriented transport layer routing (such as Transmission Control Protocol (TCP)) and connectionless transport layer routing (such as User Datagram Protocol (UDP)).
Abstract:
A device may receive a signal strength indicator associated with a connection between a mobile device and a first base station. The signal strength indicator may indicate a strength of a radio signal received by the mobile device from the first base station. The device may transmit the signal strength indicator to a network device, and may receive, from the network device, a first notification to activate a second base station based on the signal strength indicator. The device may activate the second base station based on the first notification. The second base station may provide temporary wireless connectivity for the mobile device.
Abstract:
An outdoor broadband unit receives a current time and maintenance mode parameters from a network device. The outdoor broadband unit also determines a mode associated with selection of an antenna beam, provided on an antenna of the outdoor broadband unit, based on at least one of the current time and the maintenance mode parameters. The outdoor broadband unit further selects an antenna beam or a serving cell to use based on the determined mode.
Abstract:
A base station for an Internet protocol (IP) wireless access network receives an initial attach request from a user device. Based on the initial attach request, a policy and charging rules function (PCRF) device provides to the base station, a subscriber bearer policy that includes a particular quality-of-service control indicator (QCI) value, an uplink data rate limit, and a downlink data rate limit. The base station calculates an uplink bandwidth allocation, based on the QCI value and the uplink data rate limit, that is proportionate to the total maximum data rate of all uplink traffic with the same QCI value. The base station also calculates a downlink bandwidth allocation, based on the QCI value and the downlink data rate limit, that is proportionate to the total maximum data rate of all downlink traffic with the same QCI value.
Abstract:
A first device is configured to receive, from a second device, an indication of a presence of a third device inside of a vehicle, where the first device is located inside of the vehicle. The first device is further configured to receive data associated with the vehicle, determine a vehicle condition, of the vehicle, based on the data associated with the vehicle, and deactivate a function associated with the third device based on the vehicle condition. The first device may prevent the third device from performing the deactivated function when an instruction to perform the deactivated function is received by the third device via manual input. The first device may permit the third device to perform the deactivated function when the instruction to perform the deactivated function is received by the third device via a hands-free device.