Abstract:
The present invention relates to thermoplastic and polyareneazole pulp for use as reinforcement material in products including for example fluid sealing materials, as a processing aid including its use as a thixotrope, and as a filter material. The pulp comprises (a) irregularly shaped, thermoplastic fiber fibrous structures, (b) irregularly shaped, polyareneazole fibrous structures and (c) water, whereby thermoplastic fiber fibrils and/or stalks are substantially entangled with polyareneazole fibrils and/or stalks. The invention further relates to processes for making such thermoplastic and polyareneazole pulp.
Abstract:
This invention is directed to a honeycomb core structure having a high compression modulus. The core structure comprises (a) a plurality of interconnected walls having surfaces which define a plurality of honeycomb cells, wherein the cell walls are formed from a nonwoven sheet and (b) a cured resin in an amount such that the weight of cured resin as a percentage of combined weight of cured resin and nonwoven sheet is at least 62 percent. The nonwoven sheet further comprises fibers having a modulus of at least 200 grams per denier (180 grams per dtex) and a tenacity of at least 10 grams per denier (9 grams per dtex) wherein, prior to impregnating with the resin, the nonwoven sheet has an apparent density calculated from the equation Dp=K×((dr×(100−% r)/% r)/(1+dr/ds×(100−% r)/% r), where Dp is the apparent density of the sheet before impregnation, dr is the density of cured resin, ds is the density of solid material in the sheet before impregnation, % r is the cured resin content in the final core structure in weight %, K is a number with a value from 1.0 to 1.5. Further, the Gurley porosity of the nonwoven sheet before impregnation with the resin is no greater than 30 seconds per 100 milliliters. The invention is also directed to composite structures incorporating such folded core.
Abstract:
This invention relates to papers made with fibrids containing a polymer or copolymer derived from a monomer selected from the group consisting of 4,4′diaminodiphenyl sulfone, 3,3′diaminodiphenyl sulfone, and mixtures thereof. Such papers have high thermal stability and accept ink more readily than papers made solely with aramid fibrids.
Abstract:
The invention concerns a process for making a fibrillated polypyridobisimidazole floc comprising the steps of: cutting polypyridobisimidazole filaments to an average cut length of from about 0.5 to 10 mm; and applying energy to the polypyridobisimidazole filaments to produce a fibrillated floc having essentially the same average cut length after the application of energy as before the application of energy; where the fibrillated floc having a Canadian Standard Freeness (CSF), when dispersed in water by itself, of from about 400 to 750 ml.
Abstract:
The present invention relates to a sheet structure for electrical insulation or flame resistance comprising a barrier ply having a mica-rich face and a mica-poor face and a reinforcing ply containing a saturable backing layer attached to the mica-poor face of the barrier ply.
Abstract:
This invention relates to an improved flame retardant honeycomb comprising high modulus fiber and a flame retardant thermoplastic binder having a melt point of from 120° C. to 350° C. and a limiting oxygen index of 26 or greater, methods for making the honeycomb, and articles comprising the honeycomb. In a preferred embodiment the paper in the honeycomb has a flame classification of UL-94 V-0.
Abstract:
This invention relates to a honeycomb having cells comprising a paper, the paper in one embodiment comprising 3 to 30 parts by weight aliphatic polyamide binder, and 70 to 97 parts by weight of a poly(paraphenylene terephthalamide) fiber having a modulus of 600 grams per denier (550 grams per dtex) or greater, based on the total amount of aliphatic polyamide binder and PPD-T fiber in the paper; and wherein the paper has an average specific tensile index of 60 (lbs/in)/opsy (310 Nm/g) or greater. In another embodiment, the honeycomb is made from a paper comprising 30 to 50 parts by weight aliphatic polyamide binder, and 50 to 70 parts by weight of a poly(paraphenylene terephthalamide) fiber having a modulus of 600 grams per denier (550 grams per dtex) or greater, based on the total amount of aliphatic polyamide binder and PPD-T fiber in the paper; and wherein the paper has an average specific tensile index of 60 (lbs/in)/opsy (310 Nm/g) or greater. Another embodiment includes articles comprising the aforesaid honeycombs, with such articles including a panel or an aerodynamic structure.
Abstract:
The present invention relates to a sheet structure for electrical insulation or flame resistance comprising a barrier ply having a mica-rich face and a mica-poor face and a reinforcing ply containing a saturable backing layer attached to the mica-poor face of the barrier ply.
Abstract:
The present invention relates to highly absorbent paper made using a combination of aramid fibers and glass fibers with fibrids or resin as a binder material.