Abstract:
A data processing system and method are described for permitting a server computer system to perform remote diagnostics on a malfunctioning client computer system coupled to the server computer system utilizing a network. The server computer system transmits a diagnostic command to the malfunctioning client computer system utilizing the network. A network adapter operating as a bus controller for an internal bus within the malfunctioning client computer system executes the diagnostic command. The network adapter transmits a result of the execution of the diagnostic command to the server computer system. In this manner, the diagnostic command is executed within a malfunctioning client computer system by a remote, server computer system.
Abstract:
A data processing system and method are described for remotely rendering a client computer system inoperable. The client computer system is coupled, to a server computer system utilizing a network. The client computer system is initially powered off. The server computer system transmits a signal to the client computer system utilizing the network to prohibit the client computer system from becoming operable. In response to a receipt of the signal by the client computer system, the client computer system is prohibited from becoming operable. The server computer system remotely renders the client computer system inoperable. Alternatively, the client computer system is capable of receiving wireless signals transmitted by the server computer system. The server computer transmits a wireless signal to the client computer system to prohibit the client computer system from becoming operable. In response to a receipt of the wireless signal by the client computer system, the client computer system is prohibited from becoming operable. The server computer system remotely renders the client computer system inoperable utilizing a wireless signal.
Abstract:
A data processing system and method are described for permitting a server computer system to remotely initiate a boot block recovery from a failure of a client computer system to successfully complete execution of POST. The client computer system is coupled to a server computer system utilizing a network. The client computer system fails to successfully complete executing POST. Thereafter, the server computer system transmits a recovery POST code to the client computer system utilizing the network. The client computer system executes POST utilizing the recovery POST code, wherein the client computer system is capable of successfully completing execution of POST utilizing the recovery POST code received remotely from the server computer system.
Abstract:
A data processing system and method are described for permitting a server computer system coupled to a client computer system utilizing a network to remotely modify operation of the client computer system's network hardware. A counter is established within the client computer system for counting a plurality of network events. A counter threshold is established. Upon the counter reaching the counter threshold, the client computer system's network hardware transmits a message to the server computer system including network statistics information. The network statistics information includes an indication of the counter reaching the counter threshold. In response to a receipt of the message, the server computer system determines whether to modify the operation of the client's network hardware. In response to a determination to modify operation of the network hardware, the server remotely modifies operation of the client's network hardware.
Abstract:
Improved handling of couplable device recognition tasks in an electronic device such as a cell phone, smart phone, computer system, recording device or others is facilitated. Recognition of a couplable device such as a battery so as to enable exchange of power between the device and the battery or other couplable device functionality is determined by a match between one of a plurality of digital strings stored in the device and the decrypted response to an encrypted challenge derived from the one of stored strings. Control is exercised over the distribution of the encryption elements which enable the improved handling of the tasks.
Abstract:
An approach is provided that receives an audio request from a request source while an information handling machine, such as a computer system, is in a muted state. The request source is compared with a list of one more un-mute sources stored in a memory. If the comparison reveals that the request source is included in the list of un-mute sources, then the audio request is audibly played.
Abstract:
An apparatus, system, and method are disclosed for suspend-resume scheduling in conjunction with an operation requiring a suspend-resume cycle of a computer 200, including updating, for purposes of system configuration management, a non-volatile memory 506, such as an electrically erasable programmable read-only memory (“EEPROM”) 702. A control module 402 sends 806 a request to update the EEPROM 702. A suspend module 404 suspends 818 an operating system 204. A standby module 406 prepares 904 the computer 200 to enter a standby state, estimates 914 a sufficient amount of time to enter the standby state, places 916 the estimate into an alarm register 608, and then enters 918 the standby state. An update module 308 exits 1004 the standby state in response to an alarm signal 612, receives the request if present 1008, writes 1012 the EEPROM 702 with the updated information, and resumes 1018 the operating system 204.
Abstract:
A method computer usable medium and computer system circuitry are disclosed for starting or “booting up” a computer from a remote location using a remote command device such as a cellular telephone. The method and system includes a secure means for remotely storing and transmitting security passwords.
Abstract:
Improved handling of battery recognition tasks in an electronic device such as a cell phone, smart phone, computer system, recording device or others is facilitated. Recognition of a battery so as to enable exchange of power between the device and the battery is determined by a match between one of a plurality of number strings stored in the device and the decrypted response to an encrypted challenge derived from the one of stored number string.
Abstract:
An electronic device receives a stop position tag that indicates a stop position within first electronic content which is a first sensory type. The electronic device identifies a start position within second electronic content using the stop position tag. The second electronic content is a second sensory type that is different than the first sensory type. In turn, the electronic device executes the second electronic content at the identified start position. In one embodiment, the first sensory type is an auditory sensory type and the second sensory type is an image sensory type.