Abstract:
Devices, systems, and methods are presented for a wireless base station to assign dynamically a plurality of radio transceiver chains among a varying number of wireless channels. In this manner, the communication system including the wireless base station may transition between a range extension mode and an enhanced capacity mode. In the range extension mode, a system is configured for maximum communication range with Subscriber Stations that are relatively distant from the radio transceiver chains, although communication is still possible with nearby Subscriber Stations. In the enhanced capacity mode, the system is configured for maximum communication throughput with Subscriber Stations that are relatively near to the radio transceiver chains, whereas communication with relatively distant Subscriber Stations will be either terminated or at least non-optimized.
Abstract:
A method for calibrating rates at which data is transmitted in a communication system. There is a short transmission utilizing a first set of communication parameters comprising first and second communication parameters. The first set of communication parameters are different from the second set of communication parameters used to create stable communication between the transmitter and receiver. The second set of communication parameters comprise first and second communication parameters. Then determining that there are substantially no errors associated with reception of the short transmission by the receiver. Then transmitting a long transmission utilizing a third set of communication parameters comprising first and second communication parameters. The first communication parameter of the third set is equal to the first communication parameter of the first set. The second communication parameter of the third set is equal to the second communication parameter of the second set.
Abstract:
Various embodiments of electronic communication systems and methods in which an infrastructure in-motion adapts from a first set of communication parameters to a second set of communication parameters while moving from one geographical region to a second geographical region, and associated transmission pattern of the infrastructure in-motion may be modified to either avoid a problem of multiple-region-coverage or to resolve such a problem once it has arisen. The infrastructure in-motion may be a base station or other infrastructure, and any or all of multiple techniques such as beam switching, beam selection, phased array, and null-steering, may be used to modify a transmission pattern. In various alternative embodiments, infrastructure in-motion in one geographical region establishes a first backhaul link with a first core network, moves to a second geographical region, and then establishes a second backhaul ink with a second core network.
Abstract:
A system for communicating wireless signals between one or more sector controllers (SC) and one or more subscriber stations (SS) using different channels and different beams, wherein each of the one or more SS and the SC has a corresponding highly directional antenna; the one or more SC comprises a first SC; the one or more SS comprises a first SS; the first SS obtains network topology awareness (NTA) data from the first SC; the first SS selects a channel, a beam, and one of the one or more SC to establish an RF link based on the NTA data; and the first SS communicating with the selected SC using the established RF link.
Abstract:
A system for an orthogonal frequency division multiplexed (OFDM) equalizer, said system comprising a program memory, a program sequencer and a processing unit connected to each other, wherein the processing unit comprises an input selection unit, an arithmetic logic unit (ALU), a coprocessor and an output selection unit; further wherein the program sequencer schedules the processing of one or more symbol-carrier pairs input to said OFDM equalizer using multiple threads; retrieves, for each of the one or more symbol-carrier pairs, multiple program instructions from said program memory; generates multiple expanded instructions corresponding to said retrieved multiple program instructions; and further wherein said ALU performs said processing of the one or more symbol-carrier pairs using the multiple threads across multiple pipeline stages, wherein said processing comprises said ALU executing arithmetic operations to process said expanded instructions using said multiple threads across the multiple pipeline stages.
Abstract:
A single channel full duplex wireless communication system includes a processor, a transmitter, a receiver, a secondary transmission path, a combining element, a primary transmission feedback path and a secondary transmission feedback path. The transmitter transmits a transmission signal via a transmission path. The receiver receives a received signal via a reception path. The transmitter and the receiver utilize one channel to transmit and receive signals. The transmission signal causes self-interference. The processor estimates a first transfer function and feeds the secondary transmission path with the transmission signal adjusted by the first transfer function to reduce the transmission signal leaked to the reception path. The combining element combines the transmission signal with the adjusted secondary transmission path signal to remove the self-interference. The primary transmission feedback path output is modified by a second transfer function. The secondary transmission feedback path output is modified by a third transfer function.
Abstract:
A system for an orthogonal frequency division multiplexed (OFDM) equalizer, said system comprising a program memory, a program sequencer and a processing unit connected to each other, wherein the processing unit comprises an input selection unit, an arithmetic logic unit (ALU), a coprocessor and an output selection unit; further wherein the program sequencer schedules the processing of one or more symbol-carrier pairs input to said OFDM equalizer using multiple threads; retrieves, for each of the one or more symbol-carrier pairs, multiple program instructions from said program memory; generates multiple expanded instructions corresponding to said retrieved multiple program instructions; and further wherein said ALU performs said processing of the one or more symbol-carrier pairs using the multiple threads across multiple pipeline stages, wherein said processing comprises said ALU executing arithmetic operations to process said expanded instructions using said multiple threads across the multiple pipeline stages.
Abstract:
A smart antenna system for communicating wireless signals between a mobile device and a plurality of fixed base stations using different channels and beams. The system comprises a control subsystem, a radio transceiver and an antenna subsystem, providing a plurality of beams. Each beam has a main lobe, one or more nulls, and one or more lateral and back lobes with at least some attenuation, so as to reduce interference. The system performs scanning of different combinations of base stations, channels and beams using one or more test links established with one or more of the fixed base stations. The test links use at least some of the different channels and the different beams, select a first combination of base station, channel and beam based on the scanning, and establish a first operating link for transmitting a wireless signal to the selected base station using the selected channel and beam.
Abstract:
A smart antenna system is provided for communicating wireless signals between a mobile device and a plurality of different fixed base stations using one or more channels and one or more beams. The smart antenna system includes a control subsystem, a radio transceiver and an antenna subsystem coupled to each other and adapted to perform scanning of one or more combinations of base stations, channels and beams using one or more test links established with one or more of the fixed base stations where the test links use at least some of the channels and the beams. A first combination of base station, channel and beam is selected based on the scanning; and a first operating link is established for transmitting a wireless signal to the selected base station using the selected channel and beam.
Abstract:
A system for an orthogonal frequency division multiplexed (OFDM) equalizer, said system comprising a program memory, a program sequencer and a processing unit connected to each other, wherein the processing unit comprises an input selection unit, an arithmetic logic unit (ALU), a coprocessor and an output selection unit; further wherein the program sequencer schedules the processing of one or more symbol-carrier pairs input to said OFDM equalizer using multiple threads; retrieves, for each of the one or more symbol-carrier pairs, multiple program instructions from said program memory; generates multiple expanded instructions corresponding to said retrieved multiple program instructions; and further wherein said ALU performs said processing of the one or more symbol-carrier pairs using the multiple threads across multiple pipeline stages, wherein said processing comprises said ALU executing arithmetic operations to process said expanded instructions using said multiple threads across the multiple pipeline stages.