Abstract:
An ice making machine having a refrigeration system designed for hydrocarbon (HC) refrigerants, and particularly propane (R-290), that includes dual independent refrigeration systems and a unique evaporator assembly comprising of a single freeze plate attached to two cooling circuits. The serpentines are designed in an advantageous pattern that promotes efficiency by ensuring the even bridging of ice during freezing and minimizing unwanted melting during harvest by providing an even distribution of the heat load. The charge limitations imposed with flammable refrigerants would otherwise prevent large capacity ice maker from being properly charged with a single circuit. The ice making machine includes a single water circuit and control system to ensure the proper and efficient production of ice. Material cost is conserved as compared to a traditional dual system icemaker.
Abstract:
An ice maker having a refrigeration system, a water system and a control system. The refrigeration system includes an ice formation device. The water system supplies water to the ice formation device, and includes a water reservoir (e.g., a sump or float chamber) for holding water to be formed into ice and a discharge valve in fluid communication with the water reservoir. The control system includes an ice level sensor adapted to sense the ice level in an ice storage bin, and a controller adapted to cause water to drain from the water reservoir when the ice storage bin is full. Substantially or all of the water remaining in the water reservoir is drained such that while the ice maker is not making ice the water reservoir is empty of water.
Abstract:
An ice making machine having a refrigeration system and a water system, the water system having a water reservoir located below a freeze plate adapted to hold water, and a sprayer assembly located below the freeze plate for spraying water from the water reservoir toward the pockets. An inclined ice slide is positioned below the freeze plate and above the sprayer assembly directing fallen ice toward an opening. A divider assembly separating the water system from the ice storage bin includes a plurality of dividers, wherein the dividers may rotate outwardly away from the opening to allow formed ice to fall into the ice storage bin. Each divider is formed from a generally rectangular body having a front face with a triangular-shaped thickness and an extension flap extending away from the body opposite the front face.
Abstract:
A water distributor for an ice maker having a first reservoir comprising a bottom and an inlet passageway, a central wall comprising a first central wall portion and a second central wall portion, and a second reservoir separated from the first reservoir by the central wall, the second reservoir comprising a bottom. A population of teeth separated by a population of gaps are disposed along the central wall. Water flows from the first reservoir to the second reservoir through the population of gaps. A population of outlet passageways are disposed in the second central wall portion proximate the bottom of the second reservoir. Water exits the second reservoir substantially horizontally through the population of outlet passageways.
Abstract:
An illuminating display window has a window pane and a graphic element including fluorescent material. The graphic element has a major surface facing forward and a perimeter surface extending transverse to the major surface. An electromagnetic radiation source is configured to emit electromagnetic radiation to the perimeter surface of the graphic element. The radiation includes electromagnetic radiation having a wavelength in a non-visible spectrum. The graphic element fluoresces in response to the non-visible radiation to transmit visible light to an observer in front of the window pane. To form the graphic element, fluorescent ink can be deposited on a panel in a predefined pattern or a fluorescent panel could be shaped to have a predefined shape.
Abstract:
An ice maker for forming ice having a refrigeration system, a water system and a controller. The refrigeration system includes a freeze plate in which ice is formed and a hot gas valve for harvesting the ice therefrom. A harvest sensor is triggered when at least a portion of the ice is harvested from the freeze plate and at least one temperature sensor measures a temperature that indicates that all of the ice has been harvested from the freeze plate. The temperature sensors may include a temperature sensor for measuring the refrigerant temperature at the evaporator outlet, the refrigerant temperature at the evaporator inlet, and/or the temperature of the freeze plate. The controller closes the hot gas valve in response from the triggering of the harvest sensor and the temperature measured by the temperature sensor(s) indicating that all of the ice has been harvested from the freeze plate.
Abstract:
An ice maker comprising a refrigeration system, a water system, and a control system. The control system includes a controller comprising a processor and a water level sensor. The water level sensor is adapted to externally sense a capacitance corresponding to a sump water level. The controller is adapted to control the operation of the refrigeration system and the operation of the water system based upon the sump water level and to detect one or more failure modes of the water system based upon the sump water level.
Abstract:
A door for a refrigeration unit having a transparent panel assembly having an outer transparent panel and an inner transparent panel. The outer transparent panel has an outer side, an inner side, and top, bottom, left, and right edges and the inner transparent panel has an outer side, an inner side and top, bottom, left, and right edges. A decorative design is applied to the inner side of the outer transparent panel. A population of light sources are positioned on the top, bottom, left and/or right edges of the outer transparent panel and are capable of emitting light into the outer transparent panel, such that the decorative design is capable of being illuminated by the population of light sources.
Abstract:
An ice maker for forming ice having a refrigeration system, a water system, and a control system. The refrigeration system includes a compressor, a condenser, and an evaporator. The water system includes a water filter and a sump to hold water to be made into ice. The control system includes a controller adapted to determine a baseline freeze time, a baseline harvest time, and/or a baseline fill time after an initial set of ice making cycles and is further adapted to compare subsequent harvest times, freeze times, and/or fill times to the baseline freeze, harvest, and/or fill times to determine whether the ice maker needs maintenance. If controller determines that ice maker needs maintenance, controller can push a notification to a portable electronic device connected to the ice maker.
Abstract:
An ice maker having a refrigeration system, a water system and a control system. The refrigeration system includes an ice formation device. The water system supplies water to the ice formation device, and includes a water reservoir (e.g., a sump or float chamber) for holding water to be formed into ice and a discharge valve in fluid communication with the water reservoir. The control system includes an ice level sensor adapted to sense the ice level in an ice storage bin, and a controller adapted to cause water to drain from the water reservoir when the ice storage bin is full. Substantially or all of the water remaining in the water reservoir is drained such that while the ice maker is not making ice the water reservoir is empty of water. This reduces or prevents the growth of harmful bacteria, parasites, organisms, and/or other biological material in the water reservoir.